Suppr超能文献

机器学习预测胰十二指肠切除术后早期死亡情况

Machine Learning to Predict Early Death Despite Pancreaticoduodenectomy.

作者信息

Ahmed Kaleem S, Marcinak Clayton T, Issaka Sheriff M, Ali Muhammad Maisam, Zafar Syed Nabeel

机构信息

Division of Surgical Oncology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.

Division of Surgical Oncology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.

出版信息

J Surg Res. 2025 Jun;310:186-193. doi: 10.1016/j.jss.2025.03.047. Epub 2025 Apr 26.

Abstract

INTRODUCTION

About 25% of patients undergoing pancreaticoduodenectomy (PD) for right-sided pancreatic ductal adenocarcinoma (PDAC) die within 1 y of diagnosis. These patients carry all the risks of significant morbidity with no survival advantage when compared to nonsurgical options. We aimed to determine if machine learning models have superior accuracy to traditional regression models at predicting futile surgery in patients with PDAC.

METHODS

We analyzed data from patients in the National Cancer Database undergoing PD for PDAC between 2004 and 2020. PD was defined as futile if the patient died within 12 mo of cancer diagnosis. We trained predictive models using 80% of the dataset and 16 preoperative input variables. Models included logistic regression, multilayer perceptron, decision tree, random forest, and gradient boosting classifiers. Models were tested on a 20% test set using area under the receiver operating characteristic curve and Brier scores.

RESULTS

Of the 66,331 patients identified, 34,260 (51.7%) were men, with a median age of 67 y (interquartile range, 59 to 74 y). A total of 16,772 (25.3%) patients met the criteria for futile surgery. The gradient boosting model outperformed other models with an area under the receiver operating characteristic curve of 0.689, followed by logistic regression (0.679), random forest (0.675), and decision tree (0.664). Key predictors of futile PD included advanced age (> 79 y), tumor size ≥ 4 cm, and poor differentiation. Neoadjuvant therapy was associated with lower futility risk.

CONCLUSIONS

We demonstrated the ability of machine learning models to predict the odds of futile PD with moderate accuracy. Although similar analyses are needed on more granular datasets, our study has important implications for shared decision-making and optimized care for patients with PDAC.

摘要

引言

因右侧胰腺导管腺癌(PDAC)接受胰十二指肠切除术(PD)的患者中,约25%在确诊后1年内死亡。与非手术治疗方案相比,这些患者承担着所有严重并发症的风险,且没有生存优势。我们旨在确定机器学习模型在预测PDAC患者的无效手术方面是否比传统回归模型具有更高的准确性。

方法

我们分析了2004年至2020年间国家癌症数据库中因PDAC接受PD治疗的患者数据。如果患者在癌症诊断后12个月内死亡,则将PD定义为无效。我们使用80%的数据集和16个术前输入变量训练预测模型。模型包括逻辑回归、多层感知器、决策树、随机森林和梯度提升分类器。使用受试者操作特征曲线下面积和布里尔评分在20%的测试集上对模型进行测试。

结果

在66331名确诊患者中,34260名(51.7%)为男性,中位年龄为67岁(四分位间距为59至74岁)。共有16772名(25.3%)患者符合无效手术标准。梯度提升模型表现优于其他模型,受试者操作特征曲线下面积为0.689,其次是逻辑回归(0.679)、随机森林(0.675)和决策树(0.664)。无效PD的关键预测因素包括高龄(>79岁)、肿瘤大小≥4厘米和低分化。新辅助治疗与较低的无效风险相关。

结论

我们证明了机器学习模型能够以中等准确性预测无效PD的可能性。尽管需要在更详细的数据集上进行类似分析,但我们的研究对PDAC患者的共同决策和优化治疗具有重要意义。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验