Suppr超能文献

一种仅使用术前已知数据预测胰十二指肠切除术后胰瘘的机器学习方法。

A Machine Learning Approach to Predict Postoperative Pancreatic Fistula After Pancreaticoduodenectomy Using Only Preoperatively Known Data.

作者信息

Ashraf Ganjouei Amir, Romero-Hernandez Fernanda, Wang Jaeyun Jane, Casey Megan, Frye Willow, Hoffman Daniel, Hirose Kenzo, Nakakura Eric, Corvera Carlos, Maker Ajay V, Kirkwood Kimberly S, Alseidi Adnan, Adam Mohamed A

机构信息

Department of Surgery, University of California, San Francisco, USA.

School of Medicine, University of California, San Francisco, USA.

出版信息

Ann Surg Oncol. 2023 Nov;30(12):7738-7747. doi: 10.1245/s10434-023-14041-x. Epub 2023 Aug 7.

Abstract

BACKGROUND

Clinically-relevant postoperative pancreatic fistula (CR-POPF) following pancreaticoduodenectomy (PD) is a major postoperative complication and the primary determinant of surgical outcomes. However, the majority of current risk calculators utilize intraoperative and postoperative variables, limiting their utility in the preoperative setting. Therefore, we aimed to develop a user-friendly risk calculator to predict CR-POPF following PD using state-of-the-art machine learning (ML) algorithms and only preoperatively known variables.

METHODS

Adult patients undergoing elective PD for non-metastatic pancreatic cancer were identified from the ACS-NSQIP targeted pancreatectomy dataset (2014-2019). The primary endpoint was development of CR-POPF (grade B or C). Secondary endpoints included discharge to facility, 30-day mortality, and a composite of overall and significant complications. Four models (logistic regression, neural network, random forest, and XGBoost) were trained, validated and a user-friendly risk calculator was then developed.

RESULTS

Of the 8666 patients who underwent elective PD, 13% (n = 1160) developed CR-POPF. XGBoost was the best performing model (AUC = 0.72), and the top five preoperative variables associated with CR-POPF were non-adenocarcinoma histology, lack of neoadjuvant chemotherapy, pancreatic duct size less than 3 mm, higher BMI, and higher preoperative serum creatinine. Model performance for 30-day mortality, discharge to a facility, and overall and significant complications ranged from AUC 0.62-0.78.

CONCLUSIONS

In this study, we developed and validated an ML model using only preoperatively known variables to predict CR-POPF following PD. The risk calculator can be used in the preoperative setting to inform clinical decision-making and patient counseling.

摘要

背景

胰十二指肠切除术(PD)后具有临床相关性的术后胰瘘(CR-POPF)是一种主要的术后并发症,也是手术结局的主要决定因素。然而,当前大多数风险计算器使用术中及术后变量,限制了它们在术前环境中的效用。因此,我们旨在开发一种用户友好的风险计算器,使用最先进的机器学习(ML)算法且仅基于术前已知变量来预测PD后的CR-POPF。

方法

从美国外科医师学会国家外科质量改进计划(ACS-NSQIP)的靶向胰腺切除术数据集(2014 - 2019年)中识别出因非转移性胰腺癌接受择期PD的成年患者。主要终点是CR-POPF(B级或C级)的发生。次要终点包括出院至医疗机构、30天死亡率以及总体和严重并发症的综合情况。对四种模型(逻辑回归、神经网络、随机森林和XGBoost)进行训练、验证,然后开发出一种用户友好的风险计算器。

结果

在8666例接受择期PD的患者中,13%(n = 1160)发生了CR-POPF。XGBoost是表现最佳的模型(AUC = 0.72),与CR-POPF相关的术前五大变量是非腺癌组织学类型、未接受新辅助化疗、胰管直径小于3mm、较高的体重指数以及较高的术前血清肌酐。30天死亡率、出院至医疗机构以及总体和严重并发症的模型性能的AUC范围为0.62 - 0.78。

结论

在本研究中,我们开发并验证了一种仅使用术前已知变量来预测PD后CR-POPF的ML模型。该风险计算器可用于术前环境,为临床决策和患者咨询提供信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验