Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.
Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.
Nat Commun. 2022 Jul 15;13(1):4087. doi: 10.1038/s41467-022-29594-w.
Kv3 channels have distinctive gating kinetics tailored for rapid repolarization in fast-spiking neurons. Malfunction of this process due to genetic variants in the KCNC1 gene causes severe epileptic disorders, yet the structural determinants for the unusual gating properties remain elusive. Here, we present cryo-electron microscopy structures of the human Kv3.1a channel, revealing a unique arrangement of the cytoplasmic tetramerization domain T1 which facilitates interactions with C-terminal axonal targeting motif and key components of the gating machinery. Additional interactions between S1/S2 linker and turret domain strengthen the interface between voltage sensor and pore domain. Supported by molecular dynamics simulations, electrophysiological and mutational analyses, we identify several residues in the S4/S5 linker which influence the gating kinetics and an electrostatic interaction between acidic residues in α6 of T1 and R449 in the pore-flanking S6T helices. These findings provide insights into gating control and disease mechanisms and may guide strategies for the design of pharmaceutical drugs targeting Kv3 channels.
Kv3 通道具有独特的门控动力学特性,专为快速尖峰神经元的快速复极化而设计。由于 KCNC1 基因中的遗传变异,该过程发生故障会导致严重的癫痫疾病,但对于这种异常门控特性的结构决定因素仍不清楚。在这里,我们展示了人类 Kv3.1a 通道的冷冻电镜结构,揭示了细胞质四聚化结构域 T1 的独特排列方式,这有助于与 C 末端轴突靶向基序和门控机制的关键组件相互作用。S1/S2 接头和炮塔结构域之间的额外相互作用增强了电压传感器和孔域之间的界面。通过分子动力学模拟、电生理学和突变分析的支持,我们确定了 S4/S5 接头中的几个残基,这些残基影响门控动力学,以及 T1 的 α6 中的酸性残基与孔侧 S6T 螺旋中的 R449 之间的静电相互作用。这些发现为门控控制和疾病机制提供了深入的了解,并可能为针对 Kv3 通道的药物设计策略提供指导。