Suppr超能文献

基于在线语义相似度的跨模态医学图像在线哈希检索

[Cross modal medical image online hash retrieval based on online semantic similarity].

作者信息

Liu Qinghai, Tang Lun, Wu Qianlin, Xu Liming, Chen Qianbin

机构信息

School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China.

School of Computer Science, China West Normal University, Nanchong, Sichuan 637009, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Apr 25;42(2):343-350. doi: 10.7507/1001-5515.202409022.

Abstract

Online hashing methods are receiving increasing attention in cross modal medical image retrieval research. However, existing online methods often lack the learning ability to maintain semantic correlation between new and existing data. To this end, we proposed online semantic similarity cross-modal hashing (OSCMH) learning framework to incrementally learn compact binary hash codes of medical stream data. Within it, a sparse representation of existing data based on online anchor datasets was designed to avoid semantic forgetting of the data and adaptively update hash codes, which effectively maintained semantic correlation between existing and arriving data and reduced information loss as well as improved training efficiency. Besides, an online discrete optimization method was proposed to solve the binary optimization problem of hash code by incrementally updating hash function and optimizing hash code on medical stream data. Compared with existing online or offline hashing methods, the proposed algorithm achieved average retrieval accuracy improvements of 12.5% and 14.3% on two datasets, respectively, effectively enhancing the retrieval efficiency in the field of medical images.

摘要

在线哈希方法在跨模态医学图像检索研究中受到越来越多的关注。然而,现有的在线方法往往缺乏维持新数据与现有数据之间语义相关性的学习能力。为此,我们提出了在线语义相似性跨模态哈希(OSCMH)学习框架,以增量式地学习医学流数据的紧凑二进制哈希码。在该框架中,基于在线锚定数据集设计了现有数据的稀疏表示,以避免数据的语义遗忘并自适应更新哈希码,这有效地维持了现有数据与新到达数据之间的语义相关性,减少了信息损失并提高了训练效率。此外,还提出了一种在线离散优化方法,通过增量式更新哈希函数并在医学流数据上优化哈希码来解决哈希码的二进制优化问题。与现有的在线或离线哈希方法相比,所提出的算法在两个数据集上分别实现了平均检索准确率提高12.5%和14.3%,有效地提高了医学图像领域的检索效率。

相似文献

7
Fast discrete cross-modal hashing with semantic consistency.快速离散跨模态哈希与语义一致性。
Neural Netw. 2020 May;125:142-152. doi: 10.1016/j.neunet.2020.01.035. Epub 2020 Feb 11.
10

本文引用的文献

1
Fast Cross-Modal Hashing With Global and Local Similarity Embedding.具有全局和局部相似性嵌入的快速跨模态哈希
IEEE Trans Cybern. 2022 Oct;52(10):10064-10077. doi: 10.1109/TCYB.2021.3059886. Epub 2022 Sep 19.
3
Fast Class-Wise Updating for Online Hashing.
IEEE Trans Pattern Anal Mach Intell. 2022 May;44(5):2453-2467. doi: 10.1109/TPAMI.2020.3042193. Epub 2022 Apr 1.
4
Discrete Latent Factor Model for Cross-Modal Hashing.用于跨模态哈希的离散潜在因子模型
IEEE Trans Image Process. 2019 Jul;28(7):3490-3501. doi: 10.1109/TIP.2019.2897944. Epub 2019 Feb 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验