Yang Hao, Liu Xiaolin, Meigooni Moeen, Zhang Li, Ren Jitong, Chen Qian, Losego Mark, Tajkhorshid Emad, Moore Jeffrey S, Schroeder Charles M
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
ACS Cent Sci. 2025 Apr 2;11(4):612-621. doi: 10.1021/acscentsci.4c01849. eCollection 2025 Apr 23.
Metal-binding proteins have the exceptional ability to facilitate long-range electron transport in nature. Despite recent progress, the sequence-structure-function relationships governing electron transport in heme-binding peptides and protein assemblies are not yet fully understood. In this work, the electronic properties of a series of heme-binding peptides inspired by cytochrome are studied using a combination of molecular electronics experiments, molecular modeling, and simulation. Self-assembled monolayers (SAMs) are prepared using sequence-defined heme-binding peptides capable of forming helical secondary structures. Following monolayer formation, the structural properties and chemical composition of assembled peptides are determined using atomic force microscopy and X-ray photoelectron spectroscopy, and the electronic properties (current density-voltage response) are characterized using a soft contact liquid metal electrode method based on eutectic gallium-indium alloys (EGaIn). Our results show a substantial 1000-fold increase in current density across SAM junctions upon addition of heme compared to identical peptide sequences in the absence of heme, while maintaining a constant junction thickness. These findings show that amino acid composition and sequence directly control enhancements in electron transport in heme-binding peptides. Overall, this study demonstrates the potential of using sequence-defined synthetic peptides inspired by nature as functional bioelectronic materials.
金属结合蛋白在自然界中具有促进长距离电子传输的特殊能力。尽管最近取得了进展,但支配血红素结合肽和蛋白质组装体中电子传输的序列-结构-功能关系尚未完全理解。在这项工作中,结合分子电子学实验、分子建模和模拟,研究了一系列受细胞色素启发的血红素结合肽的电子性质。使用能够形成螺旋二级结构的序列定义血红素结合肽制备自组装单分子层(SAMs)。在单分子层形成后,使用原子力显微镜和X射线光电子能谱确定组装肽的结构性质和化学成分,并使用基于共晶镓铟合金(EGaIn)的软接触液态金属电极方法表征电子性质(电流密度-电压响应)。我们的结果表明,与不存在血红素时的相同肽序列相比,添加血红素后SAM结处的电流密度大幅增加了1000倍,同时保持结厚度恒定。这些发现表明,氨基酸组成和序列直接控制血红素结合肽中电子传输的增强。总体而言,这项研究证明了使用受自然启发的序列定义合成肽作为功能性生物电子材料的潜力。