Shahoei Rezvan, Tajkhorshid Emad
Department of Physics, NIH Center for Macromolecular Modeling and Bioinformatics, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
J Phys Chem B. 2020 Mar 12;124(10):1866-1880. doi: 10.1021/acs.jpcb.9b10092. Epub 2020 Mar 2.
We utilize various computational methodologies to study menthol's interaction with multiple organic phases, a lipid bilayer, and the human α4β2 nicotinic acetylcholine receptor (nAChR), the most abundant nAChR in the brain. First, force field parameters developed for menthol are validated in alchemical free energy perturbation simulations to calculate solvation free energies of menthol in water, dodecane, and octanol and compare the results against experimental data. Next, umbrella sampling is used to construct the free energy profile of menthol permeation across a 1-palmitoyl-2-oleoyl--glycero-3-phosphocholine (POPC) bilayer. The results from a flooding simulation designed to study the water-membrane partitioning of menthol in a POPC lipid bilayer are used to determine the penetration depth and the preferred orientation of menthol in the bilayer. Finally, employing both docking and flooding simulations, menthol is shown to bind to different sites on the human α4β2 nAChR. The most likely binding mode of menthol to a desensitized membrane-embedded α4β2 nAChR is identified to be via a membrane-mediated pathway in which menthol binds to the sites at the lipid-protein interface after partitioning in the membrane. A rare but distinct binding mode in which menthol binds to the extracellular opening of receptor's ion permeation pore is also reported.
我们运用多种计算方法来研究薄荷醇与多种有机相、脂质双层以及人类α4β2烟碱型乙酰胆碱受体(nAChR)(大脑中最丰富的nAChR)之间的相互作用。首先,在炼金术自由能微扰模拟中验证为薄荷醇开发的力场参数,以计算薄荷醇在水、十二烷和辛醇中的溶剂化自由能,并将结果与实验数据进行比较。接下来,使用伞形采样构建薄荷醇穿过1-棕榈酰-2-油酰基-sn-甘油-3-磷酸胆碱(POPC)双层的自由能分布。旨在研究薄荷醇在POPC脂质双层中的水-膜分配的洪水模拟结果用于确定薄荷醇在双层中的渗透深度和优选取向。最后,通过对接和洪水模拟,表明薄荷醇与人类α4β2 nAChR上的不同位点结合。薄荷醇与脱敏的膜嵌入α4β2 nAChR的最可能结合模式被确定为通过膜介导途径,其中薄荷醇在膜中分配后与脂质-蛋白质界面处的位点结合。还报道了一种罕见但独特的结合模式,即薄荷醇与受体离子渗透孔的细胞外开口结合。