Suppr超能文献

动态多级纳米酶水凝胶重塑糖尿病伤口微环境:协同减轻氧化应激和恢复线粒体功能

Dynamic multistage nanozyme hydrogel reprograms diabetic wound microenvironment: synergistic oxidative stress alleviation and mitochondrial restoration.

作者信息

Yan Jingyu, Zhao Yifan, Cui Chenying, Zhou Lihong, Xu Yurong, Bai Ziyang, Zhang Kaifang, Tong Jiahui, Liu Yingyu, Sun Lingxiang, Du Meijun, Mi Yanling, Wang Xing, Wu Xiuping, Li Bing

机构信息

Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China.

出版信息

Mater Today Bio. 2025 Apr 17;32:101780. doi: 10.1016/j.mtbio.2025.101780. eCollection 2025 Jun.

Abstract

Chronic diabetic wounds remain a significant clinical challenge due to persistent bacterial infections, oxidative stress, impaired angiogenesis, and mitochondrial dysfunction. Traditional therapies often fail to address these interrelated pathological factors, highlighting the urgent need for innovative solutions. Here, we present a Mn-ZIF@GOx/BC (MZGB) hydrogel system, where Mn-ZIF@GOx (MZG) nanozymes are successfully integrated into a bacterial cellulose (BC) hydrogel via hydrogen bonding and electrostatic interactions. The MZGB hydrogel lowers wound pH by oxidizing excess glucose into gluconic acid. It exhibits strong ROS scavenging capabilities through its superoxide dismutase and catalase-like activities, while simultaneously providing oxygen. By restoring redox homeostasis, it protects mitochondrial function and enhances cellular energy metabolism. By reprogramming macrophages, MZGB creates a favorable immune microenvironment, significantly promoting angiogenesis through paracrine mechanisms. This facilitates cell-to-cell communication, forming a positive feedback loop. Moreover, MZGB demonstrates ROS-independent antibacterial properties. BC hydrogel ensures adhesion and moisture regulation, forming a protective barrier and maintaining an optimal wound environment. This multifunctional hydrogel represents a promising nanotherapeutic approach for efficiently treating diabetic wounds by precisely regulating the wound microenvironment.

摘要

由于持续的细菌感染、氧化应激、血管生成受损和线粒体功能障碍,慢性糖尿病伤口仍然是一个重大的临床挑战。传统疗法往往无法解决这些相互关联的病理因素,这凸显了对创新解决方案的迫切需求。在此,我们展示了一种锰-沸石咪唑酯骨架@葡萄糖氧化酶/细菌纤维素(MZGB)水凝胶系统,其中锰-沸石咪唑酯骨架@葡萄糖氧化酶(MZG)纳米酶通过氢键和静电相互作用成功整合到细菌纤维素(BC)水凝胶中。MZGB水凝胶通过将过量葡萄糖氧化成葡萄糖酸来降低伤口pH值。它通过其超氧化物歧化酶和过氧化氢酶样活性表现出强大的活性氧清除能力,同时提供氧气。通过恢复氧化还原稳态,它保护线粒体功能并增强细胞能量代谢。通过对巨噬细胞进行重编程,MZGB创造了一个有利的免疫微环境,通过旁分泌机制显著促进血管生成。这促进了细胞间通讯,形成了一个正反馈回路。此外,MZGB表现出不依赖活性氧的抗菌特性。BC水凝胶确保粘附和水分调节,形成保护屏障并维持最佳伤口环境。这种多功能水凝胶代表了一种有前途的纳米治疗方法,可通过精确调节伤口微环境有效治疗糖尿病伤口。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d243/12032933/a44ed9c5e768/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验