Suppr超能文献

在康复临床文档中引入生成式人工智能的效果

Effects of Introducing Generative AI in Rehabilitation Clinical Documentation.

作者信息

Omon Kyohei, Sasaki Tomohiko, Koshiro Ryota, Fuchigami Takeshi, Hamashima Masahiro

机构信息

SDX Research Institute, Seiwakai Medical Corporation Group, Osaka, JPN.

Department of Rehabilitation, Saito Rehabilitation Hospital, Osaka, JPN.

出版信息

Cureus. 2025 Mar 27;17(3):e81313. doi: 10.7759/cureus.81313. eCollection 2025 Mar.

Abstract

Introduction Healthcare professionals reportedly spend a significant proportion of their working hours on documentation. Therefore, we developed a generative AI solution specialized in creating clinical documentation for rehabilitation. This study aimed to examine the impact of generative AI on clinical documentation tasks. Methods Twelve rehabilitation professionals (physical therapists, occupational therapists, and speech-language pathologists) participated in this study. We compared conventional clinical documentation (Period A) with clinical documentation using a generative AI system (Period B). Measures taken for both periods included time required to complete the clinical documentation (documentation time), workload assessed using the National Aeronautics and Space Administration Task Load Index (NASA-TLX), and quality of the clinical documentation. Between-group comparisons of these measurements were performed. Additionally, we recorded the number of non-conversational voice memos (voice data inputs) in Period B. After the study, we assessed the participants' willingness to adopt generative AI (implementation intent) on a five-point scale. For statistical analysis, we compared documentation time, NASA-TLX scores, and documentation quality between the two periods. Time saved was determined by subtracting the documentation time of Period B from that of Period A, and a correlation analysis between the number of voice memos (voice data input) and the willingness to adopt the technology was conducted. Analyses were performed using R version 4.2.3 (R Core Team, Durham, NC), with the level of significance set at 0.05. Results No significant difference was observed in the time required to prepare clinical documentation between Periods A and B. However, in Period B, the NASA-TLX time pressure score was significantly lower, while the quality of clinical documentation was significantly higher. Additionally, a strong positive correlation was observed between the reduction in documentation time and the number of voice memos (r = 0.71, p < 0.01), as well as a significant positive correlation with the willingness to adopt the system (r = 0.67, p < 0.05) during clinical documentation in Period B. Conclusion Our findings indicate that using generative AI for clinical documentation tasks can reduce time pressure and improve documentation quality. Moreover, the reduction in documentation time was associated with the frequency of voice memos and the degree of participants' willingness to adopt the system. These results suggest that, to achieve further reductions in workload and costs, considering the motivation and cooperative framework of healthcare professionals when introducing generative AI solutions is essential.

摘要

引言 据报道,医疗保健专业人员将大量工作时间用于文档记录。因此,我们开发了一种专门用于创建康复临床文档的生成式人工智能解决方案。本研究旨在考察生成式人工智能对临床文档任务的影响。方法 十二名康复专业人员(物理治疗师、职业治疗师和言语语言病理学家)参与了本研究。我们将传统临床文档(A阶段)与使用生成式人工智能系统的临床文档(B阶段)进行了比较。两个阶段采取的测量指标包括完成临床文档所需的时间(文档记录时间)、使用美国国家航空航天局任务负荷指数(NASA-TLX)评估的工作量以及临床文档的质量。对这些测量指标进行了组间比较。此外,我们记录了B阶段非对话式语音备忘录(语音数据输入)的数量。研究结束后,我们采用五点量表评估了参与者采用生成式人工智能的意愿(实施意向)。为进行统计分析,我们比较了两个阶段的文档记录时间、NASA-TLX分数和文档质量。节省的时间通过A阶段的文档记录时间减去B阶段的文档记录时间来确定,并对语音备忘录数量(语音数据输入)与采用该技术的意愿进行了相关分析。使用R版本4.2.3(R核心团队,北卡罗来纳州达勒姆)进行分析,显著性水平设定为0.05。结果 A阶段和B阶段在准备临床文档所需时间方面未观察到显著差异。然而,在B阶段,NASA-TLX时间压力分数显著更低,而临床文档质量显著更高。此外,在B阶段临床文档记录过程中,观察到文档记录时间的减少与语音备忘录数量之间存在强正相关(r = 0.71,p < 0.01),并且与采用该系统的意愿也存在显著正相关(r = 0.67,p < 0.05)。结论 我们的研究结果表明,在临床文档任务中使用生成式人工智能可以减轻时间压力并提高文档质量。此外,文档记录时间的减少与语音备忘录的频率以及参与者采用该系统的意愿程度相关。这些结果表明,为了进一步减轻工作量和成本,在引入生成式人工智能解决方案时考虑医疗保健专业人员的动机和合作框架至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dab/12033086/bcfb0a27a502/cureus-0017-00000081313-i01.jpg

相似文献

1
Effects of Introducing Generative AI in Rehabilitation Clinical Documentation.
Cureus. 2025 Mar 27;17(3):e81313. doi: 10.7759/cureus.81313. eCollection 2025 Mar.
4
Subjective and objective quantification of physician's workload and performance during radiation therapy planning tasks.
Pract Radiat Oncol. 2013 Oct-Dec;3(4):e171-7. doi: 10.1016/j.prro.2013.01.001. Epub 2013 Feb 21.
5
Evaluation of an Ambient Artificial Intelligence Documentation Platform for Clinicians.
JAMA Netw Open. 2025 May 1;8(5):e258614. doi: 10.1001/jamanetworkopen.2025.8614.
6
Quantitative assessment of workload and stressors in clinical radiation oncology.
Int J Radiat Oncol Biol Phys. 2012 Aug 1;83(5):e571-6. doi: 10.1016/j.ijrobp.2012.01.063. Epub 2012 Apr 13.

本文引用的文献

1
Embracing generative AI in health care.
Lancet Reg Health Eur. 2023 Jul 3;30:100677. doi: 10.1016/j.lanepe.2023.100677. eCollection 2023 Jul.
2
BioGPT: generative pre-trained transformer for biomedical text generation and mining.
Brief Bioinform. 2022 Nov 19;23(6). doi: 10.1093/bib/bbac409.
3
[Mental Workload Assessment of Health Care Staff by NASA-TLX].
J UOEH. 2020;42(1):63-75. doi: 10.7888/juoeh.42.63.
4
Use of electronic clinical documentation: time spent and team interactions.
J Am Med Inform Assoc. 2011 Mar-Apr;18(2):112-7. doi: 10.1136/jamia.2010.008441. Epub 2011 Feb 2.
7
Beyond the gadgets.
BMJ. 2004 May 15;328(7449):1146-7. doi: 10.1136/bmj.328.7449.1146.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验