文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

啤酒酵母中的麦芽糖和麦芽三糖转运蛋白:其活性中的多态性和关键残基

Maltose and Maltotriose Transporters in Brewer's Yeasts: Polymorphic and Key Residues in Their Activity.

作者信息

Faz-Cortez Oscar A, García-García Jorge H, Carrizales-Sánchez Ana K, Fonseca-Peralta Hector M, Herrera-Gamboa Jessica G, Perez-Ortega Esmeralda R, Hernández-Vásquez César I, Pereyra-Alférez Benito

机构信息

Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico.

Department of Research and Development, Cervecería Cuauhtémoc Moctezuma, Monterrey 64410, Nuevo León, Mexico.

出版信息

Int J Mol Sci. 2025 Jun 20;26(13):5943. doi: 10.3390/ijms26135943.


DOI:10.3390/ijms26135943
PMID:40649723
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12250536/
Abstract

Maltose and maltotriose are the most abundant sugars in brewing wort, and their transport represent a critical bottleneck in the fermentation process. This transport relies on specific transmembrane proteins; however, many yeast strains exhibit inefficient uptake of these sugars, particularly maltotriose. Addressing this limitation requires a comprehensive understanding of the factors influencing the transport of maltose and maltotriose. This review provides a detailed synthesis of the key characteristics and functions of the maltose and maltotriose transmembrane transporters identified in brewer's yeasts. Critical amino acid residues involved in transporter activity are also highlighted, and the impact of specific polymorphisms and sequence variations on sugar preference and uptake efficiency is examined. Furthermore, a thorough discussion of the most important reported residues is presented, underscoring the need to closely examine their amino acid composition to better understand transporter mechanisms, optimize their performance, and enhance fermentation outcomes.

摘要

麦芽糖和麦芽三糖是酿造麦芽汁中含量最丰富的糖类,它们的转运是发酵过程中的一个关键瓶颈。这种转运依赖于特定的跨膜蛋白;然而,许多酵母菌株对这些糖类的摄取效率低下,尤其是麦芽三糖。解决这一限制需要全面了解影响麦芽糖和麦芽三糖转运的因素。本综述详细综合了在酿酒酵母中鉴定出的麦芽糖和麦芽三糖跨膜转运蛋白的关键特征和功能。还强调了参与转运蛋白活性的关键氨基酸残基,并研究了特定多态性和序列变异对糖类偏好和摄取效率的影响。此外,还对最重要的已报道残基进行了深入讨论,强调需要仔细研究它们的氨基酸组成,以更好地理解转运机制、优化其性能并提高发酵效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/f19ba74c0110/ijms-26-05943-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/c53c5b620d9d/ijms-26-05943-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/d096e73def20/ijms-26-05943-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/118206a1b687/ijms-26-05943-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/ef86358f99f2/ijms-26-05943-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/5806e56aa443/ijms-26-05943-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/25af48b47446/ijms-26-05943-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/1a3c9640e5df/ijms-26-05943-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/10b50d7dd061/ijms-26-05943-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/2ada0423fd65/ijms-26-05943-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/f19ba74c0110/ijms-26-05943-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/c53c5b620d9d/ijms-26-05943-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/d096e73def20/ijms-26-05943-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/118206a1b687/ijms-26-05943-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/ef86358f99f2/ijms-26-05943-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/5806e56aa443/ijms-26-05943-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/25af48b47446/ijms-26-05943-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/1a3c9640e5df/ijms-26-05943-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/10b50d7dd061/ijms-26-05943-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/2ada0423fd65/ijms-26-05943-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bf/12250536/f19ba74c0110/ijms-26-05943-g010.jpg

相似文献

[1]
Maltose and Maltotriose Transporters in Brewer's Yeasts: Polymorphic and Key Residues in Their Activity.

Int J Mol Sci. 2025-6-20

[2]
Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes.

Appl Environ Microbiol. 2009-4

[3]
The Thr505 and Ser557 residues of the AGT1-encoded alpha-glucoside transporter are critical for maltotriose transport in Saccharomyces cerevisiae.

J Appl Microbiol. 2008-4

[4]
Obtaining new brewing yeasts using regional Chilean wine yeasts through an adaptive evolution program.

Front Microbiol. 2025-6-16

[5]
Himalayan Genome Sequences Reveal Genetic Markers Explaining Heterotic Maltotriose Consumption by Saccharomyces pastorianus Hybrids.

Appl Environ Microbiol. 2019-10-30

[6]
Expression patterns of genes and association with differential maltose and maltotriose transport rate of two yeasts.

Appl Environ Microbiol. 2024-7-24

[7]
Maltose and maltotriose utilisation by group I strains of the hybrid lager yeast Saccharomyces pastorianus.

FEMS Yeast Res. 2016-8

[8]
Evolution of a novel chimeric maltotriose transporter in Saccharomyces eubayanus from parent proteins unable to perform this function.

PLoS Genet. 2019-4-4

[9]
In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation.

PLoS Genet. 2019-4-4

[10]
Maltotriose utilization by industrial Saccharomyces strains: characterization of a new member of the alpha-glucoside transporter family.

Appl Environ Microbiol. 2005-9

本文引用的文献

[1]
Computational analysis of polymorphic residues in maltose and maltotriose transporters of a wild strain.

Open Life Sci. 2025-4-16

[2]
A Dive Into Yeast's Sugar Diet-Comparing the Metabolic Response of Glucose, Fructose, Sucrose, and Maltose Under Dynamic Feast/Famine Conditions.

Biotechnol Bioeng. 2025-4

[3]
Key Amino Acid Residues of the Agt1 Transporter for Trehalose Transport by .

J Fungi (Basel). 2024-11-11

[4]
Specialization Restricts the Evolutionary Paths Available to Yeast Sugar Transporters.

Mol Biol Evol. 2024-11-1

[5]
Expression patterns of genes and association with differential maltose and maltotriose transport rate of two yeasts.

Appl Environ Microbiol. 2024-7-24

[6]
The Arabidopsis AtSWEET13 transporter discriminates sugars by selective facial and positional substrate recognition.

Commun Biol. 2024-6-24

[7]
Recombinase-independent chromosomal rearrangements between dispersed inverted repeats in Saccharomyces cerevisiae meiosis.

Nucleic Acids Res. 2023-10-13

[8]
Highly complete long-read genomes reveal pangenomic variation underlying yeast phenotypic diversity.

Genome Res. 2023-5

[9]
Evolution and functional diversification of yeast sugar transporters.

Essays Biochem. 2023-9-13

[10]
Exploiting Non-Conventional Yeasts for Low-Alcohol Beer Production.

Microorganisms. 2023-1-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索