Suppr超能文献

用于微流体的轴对称热粘性和热膨胀流动。

Axisymmetric thermoviscous and thermal expansion flows for microfluidics.

作者信息

Liao Weida, Lauga Eric

机构信息

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA UK.

出版信息

J Eng Math. 2025;152(1):6. doi: 10.1007/s10665-025-10445-8. Epub 2025 Apr 25.

Abstract

Recent microfluidic experiments have explored the precise positioning of micron-sized particles in liquid environments via laser-induced thermoviscous flow. From micro-robotics to biology at the subcellular scale, this versatile technique has found a broad range of applications. Through the interplay between thermal expansion and thermal viscosity changes, the repeated scanning of the laser along a scan path results in fluid flow and hence net transport of particles, without physical channels. Building on previous work focusing on two-dimensional microfluidic settings, we present an analytical, theoretical model for the thermoviscous and thermal expansion flows and net transport induced by a translating heat spot in three-dimensional, unconfined fluid. We first numerically solve for the temperature field due to a translating heat source in the experimentally relevant limit. Then, in our flow model, the small, localised temperature increase causes local changes in the mass density, shear viscosity and bulk viscosity of the fluid. We derive analytically the instantaneous flow generated during one scan and compute the net transport of passive tracers due to a full scan, up to quadratic order in the thermal expansion and thermal shear viscosity coefficients. We further show that the flow and transport are independent of bulk viscosity. In the far field, while the leading-order instantaneous flow is typically a three-dimensional source or sink, the leading-order average velocity of tracers is instead a source dipole, whose strength depends on the relative magnitudes of the thermal expansion and thermal shear viscosity coefficients. Our quantitative results reveal the potential for future three-dimensional net transport and manipulation of particles at the microscale.

摘要

最近的微流控实验通过激光诱导热粘性流动探索了微米级颗粒在液体环境中的精确定位。从微机器人技术到亚细胞尺度的生物学,这项多功能技术已得到广泛应用。通过热膨胀和热粘度变化之间的相互作用,激光沿扫描路径的重复扫描会导致流体流动,从而实现颗粒的净传输,而无需物理通道。基于之前专注于二维微流控设置的工作,我们提出了一个分析性的理论模型,用于描述三维无界流体中平移热斑引起的热粘性流动、热膨胀流动和净传输。我们首先在实验相关的极限条件下,对平移热源产生的温度场进行数值求解。然后,在我们的流动模型中,局部小幅度的温度升高会导致流体的质量密度、剪切粘度和体积粘度发生局部变化。我们通过分析得出一次扫描过程中产生的瞬时流动,并计算出由于完整扫描导致的被动示踪剂的净传输,直至热膨胀系数和热剪切粘度系数的二次项。我们进一步表明,流动和传输与体积粘度无关。在远场中,虽然一阶瞬时流动通常是三维源或汇,但示踪剂的一阶平均速度却是源偶极子,其强度取决于热膨胀系数和热剪切粘度系数的相对大小。我们的定量结果揭示了未来在微尺度上进行三维颗粒净传输和操控的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c1e/12031818/c4a618ca1f17/10665_2025_10445_Fig9_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验