Benavent Diego, Venerito Vincenzo, Michelena Xabier
Department of Rheumatology, Hospital Universitari de Bellvitge, Barcelona, Spain.
Department of Precision and Regenerative Medicine and Ionian Area, Polyclinic Hospital, University of Bari, Bari, Italy.
Ther Adv Musculoskelet Dis. 2025 Apr 21;17:1759720X251331529. doi: 10.1177/1759720X251331529. eCollection 2025.
Artificial intelligence (AI) is increasingly transforming rheumatology with research on disease detection, monitoring, and outcome prediction through the analysis of large datasets. The advent of generative models and large language models (LLMs) has expanded AI's capabilities, particularly in natural language processing (NLP) tasks such as question-answering and medical literature synthesis. While NLP has shown promise in identifying rheumatic diseases from electronic health records with high accuracy, LLMs face significant challenges, including hallucinations and a lack of domain-specific knowledge, which limit their reliability in specialized medical fields like rheumatology. Retrieval-augmented generation (RAG) emerges as a solution to these limitations by integrating LLMs with real-time access to external, domain-specific databases. RAG enhances the accuracy and relevance of AI-generated responses by retrieving pertinent information during the generation process, reducing hallucinations, and improving the trustworthiness of AI applications. This architecture allows for precise, context-aware outputs and can handle unstructured data effectively. Despite its success in other industries, the application of RAG in medicine, and specifically in rheumatology, remains underexplored. Potential applications in rheumatology include retrieving up-to-date clinical guidelines, summarizing complex patient histories from unstructured data, aiding in patient identification for clinical trials, enhancing pharmacovigilance efforts, and supporting personalized patient education. RAG also offers advantages in data privacy by enabling local data handling and reducing reliance on large, general-purpose models. Future directions involve integrating RAG with fine-tuned, smaller LLMs and exploring multimodal models that can process diverse data types. Challenges such as infrastructure costs, data privacy concerns, and the need for specialized evaluation metrics must be addressed. Nevertheless, RAG presents a promising opportunity to improve AI applications in rheumatology, offering a more precise, accountable, and sustainable approach to integrating advanced language models into clinical practice and research.
人工智能(AI)正通过对大型数据集的分析进行疾病检测、监测和结果预测研究,日益改变着风湿病学领域。生成模型和大语言模型(LLMs)的出现扩展了人工智能的能力,特别是在诸如问答和医学文献综合等自然语言处理(NLP)任务方面。虽然NLP在从电子健康记录中高精度识别风湿性疾病方面显示出了前景,但大语言模型面临着重大挑战,包括幻觉和缺乏特定领域知识,这限制了它们在风湿病学等专业医学领域的可靠性。检索增强生成(RAG)通过将大语言模型与实时访问外部特定领域数据库相结合,成为解决这些限制的一种方法。RAG通过在生成过程中检索相关信息,减少幻觉并提高人工智能应用的可信度,从而提高了人工智能生成回答的准确性和相关性。这种架构允许产生精确的、上下文感知的输出,并能有效处理非结构化数据。尽管RAG在其他行业取得了成功,但它在医学领域,特别是在风湿病学中的应用仍未得到充分探索。在风湿病学中的潜在应用包括检索最新的临床指南、从非结构化数据中总结复杂的患者病史、协助临床试验的患者识别、加强药物警戒工作以及支持个性化患者教育。RAG还通过实现本地数据处理和减少对大型通用模型的依赖,在数据隐私方面具有优势。未来的方向包括将RAG与经过微调的较小的大语言模型集成,并探索能够处理多种数据类型的多模态模型。必须解决诸如基础设施成本、数据隐私问题以及对专门评估指标的需求等挑战。尽管如此,RAG为改善风湿病学中的人工智能应用提供了一个有前景的机会,为将先进语言模型整合到临床实践和研究中提供了一种更精确、可问责和可持续的方法。