Suppr超能文献

基于证据的人工智能:实施检索增强生成模型以加强整形外科的临床决策支持

Evidence-based artificial intelligence: Implementing retrieval-augmented generation models to enhance clinical decision support in plastic surgery.

作者信息

Ozmen Berk B, Mathur Piyush

机构信息

Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA.

Department of General Anesthesiology, Cleveland Clinic, Cleveland, OH, USA; BrainXAI ReSearch, BrainX LLC, Cleveland, OH, USA.

出版信息

J Plast Reconstr Aesthet Surg. 2025 May;104:414-416. doi: 10.1016/j.bjps.2025.03.053. Epub 2025 Mar 31.

Abstract

The rapid advancement of large language models (LLMs) has generated significant enthusiasm within healthcare, especially in supporting clinical decision-making and patient management. However, inherent limitations including hallucinations, outdated clinical context, and unreliable references pose serious concerns for their clinical utility. Retrieval-Augmented Generation (RAG) models address these limitations by integrating validated, curated medical literature directly into AI workflows, significantly enhancing the accuracy, relevance, and transparency of generated outputs. This viewpoint discusses how RAG frameworks can specifically benefit plastic and reconstructive surgery by providing contextually accurate, evidence-based, and clinically grounded support for decision-making. Potential clinical applications include clinical decision support, efficient evidence synthesis, customizable patient education, informed consent materials, multilingual capabilities, and structured surgical documentation. By querying specialized databases that incorporate contemporary guidelines and literature, RAG models can markedly reduce inaccuracies and increase the reliability of AI-generated responses. However, the implementation of RAG technology demands rigorous database curation, regular updating with guidelines from surgical societies, and ongoing validation to maintain clinical relevance. Addressing challenges related to data privacy, governance, ethical considerations, and user training remains critical for successful clinical adoption. In conclusion, RAG models represent a significant advancement in overcoming traditional LLM limitations, promoting transparency and clinical accuracy with great potential for plastic surgery. Plastic surgeons and researchers are encouraged to explore and integrate these innovative generative AI frameworks to enhance patient care, surgical outcomes, communication, documentation quality, and education.

摘要

大语言模型(LLMs)的快速发展在医疗保健领域引发了极大的热情,尤其是在支持临床决策和患者管理方面。然而,其内在局限性,包括幻觉、过时的临床背景和不可靠的参考文献,对其临床实用性构成了严重担忧。检索增强生成(RAG)模型通过将经过验证、精心策划的医学文献直接整合到人工智能工作流程中来解决这些局限性,显著提高了生成输出的准确性、相关性和透明度。本观点讨论了RAG框架如何通过为决策提供上下文准确、基于证据且临床依据充分的支持,特别造福于整形和重建外科。潜在的临床应用包括临床决策支持、高效的证据综合、可定制的患者教育、知情同意材料、多语言能力和结构化手术记录。通过查询包含当代指南和文献的专业数据库,RAG模型可以显著减少不准确之处,提高人工智能生成回答的可靠性。然而,RAG技术的实施需要严格的数据库管理、根据外科协会的指南定期更新以及持续验证以保持临床相关性。解决与数据隐私、治理、伦理考量和用户培训相关的挑战对于在临床中成功应用仍然至关重要。总之,RAG模型代表了在克服传统大语言模型局限性方面的重大进展,促进了透明度和临床准确性,在整形手术中具有巨大潜力。鼓励整形外科医生和研究人员探索并整合这些创新的生成式人工智能框架,以改善患者护理、手术效果、沟通、记录质量和教育。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验