Suppr超能文献

用于识别自闭症谱系障碍关键基因的混合深度学习方法。

Hybrid deep learning method to identify key genes in autism spectrum disorder.

作者信息

Singh Naveen Kumar, Patel Asmita, Verma Nidhi, Singh R K Brojen, Sharma Saurabh Kumar

机构信息

School of Computer and Systems Sciences Jawaharlal Nehru University New Delhi India.

Department of Microbiology Ram Lal Anand College University of Delhi New Delhi India.

出版信息

Healthc Technol Lett. 2025 Apr 22;12(1):e12104. doi: 10.1049/htl2.12104. eCollection 2025 Jan-Dec.

Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic component. This research aims to identify key genes associated with autism spectrum disorder using a hybrid deep learning approach. To achieve this, a protein-protein interaction network is constructedand analyzed through a graph convolutional network, which extracts features based on gene interactions. Logistic regression is then employed to predict potential key regulatorgenes using probability scores derived from these features. To evaluate the infection ability of these potential key regulator genes, a susceptible-infected (SI) model, is performed, which reveals the higher infection ability for the genes identified by the proposed method, highlighting its effectiveness in pinpointing key genetic factors associated with ASD. The performance of the proposed method is compared with centrality methods, showing significantly improved results. Identified key genes are further compared with the SFARI gene database and the Evaluation of Autism Gene Link Evidence (EAGLE) framework, revealing commongenes that are strongly associated with ASD. This reinforces the validity of the method in identifying key regulator genes. The proposed method aligns with advancements in therapeutic systems, diagnostics, and neural engineering, providing a robust framework for ASD research and other neurodevelopmental disorders.

摘要

自闭症谱系障碍(ASD)是一种具有强大遗传成分的复杂神经发育障碍。本研究旨在使用混合深度学习方法识别与自闭症谱系障碍相关的关键基因。为实现这一目标,构建了一个蛋白质-蛋白质相互作用网络,并通过图卷积网络进行分析,该网络基于基因相互作用提取特征。然后使用逻辑回归,利用从这些特征得出的概率分数来预测潜在的关键调控基因。为评估这些潜在关键调控基因的影响能力,进行了一个易感-感染(SI)模型,该模型揭示了所提出方法识别出的基因具有更高的影响能力,突出了其在确定与ASD相关的关键遗传因素方面的有效性。将所提出方法的性能与中心性方法进行比较,结果显示有显著改善。将识别出的关键基因进一步与SFARI基因数据库和自闭症基因关联证据评估(EAGLE)框架进行比较,揭示了与ASD密切相关的共同基因。这加强了该方法在识别关键调控基因方面的有效性。所提出的方法与治疗系统、诊断和神经工程的进展相一致,为ASD研究和其他神经发育障碍提供了一个强大的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6564/12023764/25a5acfb7503/HTL2-12-e12104-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验