Suppr超能文献

基于自适应多尺度特征融合的表面缺陷检测

Surface Defect Detection Based on Adaptive Multi-Scale Feature Fusion.

作者信息

Wen Guochen, Cheng Li, Yuan Haiwen, Li Xuan

机构信息

School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China.

出版信息

Sensors (Basel). 2025 Mar 10;25(6):1720. doi: 10.3390/s25061720.

Abstract

Surface defect detection plays a quality assurance role in industrial manufacturing processes. However, the diversity of defects and the presence of complex backgrounds bring significant challenges to salient object detection. To this end, this study proposes a new adaptive multi-scale feature fusion network (AMSFF-Net) to solve the SOD problem of object surface defects. The upsampling fusion module used adaptive weight fusion, global feature adaptive fusion, and differential feature adaptive fusion to fuse information of different scales and levels. In addition, the spatial attention (SA) mechanism was introduced to enhance the effective fusion of multi-feature maps. Preprocessing techniques such as aspect ratio adjustment and random rotation were used. Aspect ratio adjustment helps to identify and locate defects of different shapes and sizes, and random rotation enhances the ability of the model to detect defects at different angles. The negative samples and non-uniform-distribution samples in the magnetic tile defect dataset were further removed to ensure data quality. This study conducted comprehensive experiments, demonstrating that AMSFF-Net outperforms existing state-of-the-art technologies. The proposed method achieved an S-measure of 0.9038 and an Fβmax of 0.8782, which represents a 1% improvement in Fβmax compared to the best existing methods.

摘要

表面缺陷检测在工业制造过程中起着质量保证的作用。然而,缺陷的多样性和复杂背景的存在给显著目标检测带来了重大挑战。为此,本研究提出了一种新的自适应多尺度特征融合网络(AMSFF-Net)来解决物体表面缺陷的显著目标检测(SOD)问题。上采样融合模块采用自适应权重融合、全局特征自适应融合和差分特征自适应融合来融合不同尺度和层次的信息。此外,引入了空间注意力(SA)机制来增强多特征图的有效融合。使用了诸如长宽比调整和随机旋转等预处理技术。长宽比调整有助于识别和定位不同形状和大小的缺陷,随机旋转增强了模型检测不同角度缺陷的能力。进一步去除了磁瓦缺陷数据集中的负样本和非均匀分布样本,以确保数据质量。本研究进行了全面的实验,表明AMSFF-Net优于现有的先进技术。所提出的方法实现了0.9038的S-measure和0.8782的Fβmax,与现有的最佳方法相比,Fβmax提高了1%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395c/11946307/d6b15338d571/sensors-25-01720-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验