Suppr超能文献

通过人工智能技术实现电阻焊接质量

Resistance Welding Quality Through Artificial Intelligence Techniques.

作者信息

Domínguez-Molina Luis Alonso, Rivas-Araiza Edgar, Jauregui-Correa Juan Carlos, Gonzalez-Cordoba Jose Luis, Pedraza-Ortega Jesús Carlos, Takacs Andras

机构信息

Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, México.

出版信息

Sensors (Basel). 2025 Mar 12;25(6):1744. doi: 10.3390/s25061744.

Abstract

Quality assessment of the resistance spot welding process (RSW) is vital during manufacturing. Evaluating the quality without altering the joint material's physical and mechanical properties has gained interest. This study uses a trained computer vision model to propose a cheap, non-destructive quality-evaluation methodology. The methodology connects the welding input and during-process parameters with the output visual quality information. A manual resistance spot welding machine was used to monitor and record the process input and output parameters to generate the dataset for training. The welding current, welding time, and electrode pressure data were correlated with the welding spot nugget's quality, mechanical characteristics, and thermal and visible images. Six machine learning models were trained on visible and thermographic images to classify the weld's quality and connect the quality characteristics (pull force and welding diameter) and the manufacturing process parameters with the visible and thermographic images of the weld. Finally, a cross-validation method validated the robustness of these models. The results indicate that the welding time and the angle between electrodes are highly influential parameters on the mechanical strength of the joint. Additionally, models using visible images of the welding spot exhibited superior performance compared to thermal images.

摘要

电阻点焊工艺(RSW)的质量评估在制造过程中至关重要。在不改变接头材料物理和机械性能的情况下评估质量已引起关注。本研究使用经过训练的计算机视觉模型提出一种廉价的无损质量评估方法。该方法将焊接输入和过程参数与输出视觉质量信息联系起来。使用手动电阻点焊机监测和记录过程输入和输出参数,以生成用于训练的数据集。焊接电流、焊接时间和电极压力数据与焊点熔核的质量、机械特性以及热图像和可见图像相关联。在可见图像和热成像图像上训练了六个机器学习模型,以对焊缝质量进行分类,并将质量特征(拉力和焊接直径)以及制造工艺参数与焊缝的可见图像和热成像图像联系起来。最后,采用交叉验证方法验证了这些模型的稳健性。结果表明,焊接时间和电极之间的角度是对接头机械强度有高度影响的参数。此外,使用焊点可见图像的模型相比热成像图像表现出更优的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/860a/11945042/f5b975447e9b/sensors-25-01744-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验