Adewole Kayode S, Jacobsson Andreas, Davidsson Paul
Department of Computer Science and Media Technology, Malmö University, 205 06 Malmö, Sweden.
Sustainable Digitalisation Research Centre, Malmö University, 205 06 Malmö, Sweden.
Sensors (Basel). 2025 Mar 16;25(6):1845. doi: 10.3390/s25061845.
As the proliferation of Internet of Things (IoT) devices grows, challenges in security, privacy, and interoperability become increasingly significant. IoT devices often have resource constraints, such as limited computational power, energy efficiency, bandwidth, and storage, making it difficult to implement advanced security measures. Additionally, the diversity of IoT devices creates vulnerabilities and threats that attackers can exploit, including spoofing, routing, man-in-the-middle, and denial-of-service. To address these evolving threats, Intrusion Detection Systems (IDSs) have become a vital solution. IDS actively monitors network traffic, analyzing incoming and outgoing data to detect potential security breaches, ensuring IoT systems remain safeguarded against malicious activity. This study introduces an IDS framework that integrates ensemble learning with rule induction for enhanced model explainability. We study the performance of five ensemble algorithms (Random Forest, AdaBoost, XGBoost, LightGBM, and CatBoost) for developing effective IDS for IoT. The results show that XGBoost outperformed the other ensemble algorithms on two publicly available datasets for intrusion detection. XGBoost achieved 99.91% accuracy and 99.88% AUC-ROC on the CIC-IDS2017 dataset, as well as 98.54% accuracy and 93.06% AUC-ROC on the CICIoT2023 dataset, respectively. We integrate model explainability to provide transparent IDS system using a rule induction method. The experimental results confirm the efficacy of the proposed approach for providing a lightweight, transparent, and trustworthy IDS system that supports security analysts, end-users, and different stakeholders when making decisions regarding intrusion and non-intrusion events.
随着物联网(IoT)设备的不断扩散,安全、隐私和互操作性方面的挑战变得越来越重要。物联网设备通常存在资源限制,如计算能力有限、能源效率低、带宽不足和存储受限,这使得实施先进的安全措施变得困难。此外,物联网设备的多样性产生了攻击者可以利用的漏洞和威胁,包括欺骗、路由、中间人攻击和拒绝服务。为了应对这些不断演变的威胁,入侵检测系统(IDS)已成为至关重要的解决方案。IDS积极监控网络流量,分析传入和传出的数据以检测潜在的安全漏洞,确保物联网系统免受恶意活动的侵害。本研究介绍了一种将集成学习与规则归纳相结合的IDS框架,以增强模型的可解释性。我们研究了五种集成算法(随机森林、自适应增强、XGBoost、LightGBM和CatBoost)在开发有效的物联网IDS方面的性能。结果表明,在两个公开可用的入侵检测数据集上,XGBoost的性能优于其他集成算法。XGBoost在CIC-IDS2017数据集上的准确率达到99.91%,AUC-ROC达到99.88%,在CICIoT2023数据集上的准确率分别为98.54%和AUC-ROC为93.06%。我们集成了模型可解释性,使用规则归纳方法提供透明的IDS系统。实验结果证实了所提出方法的有效性,该方法可提供一个轻量级、透明且值得信赖的IDS系统,在针对入侵和非入侵事件做出决策时支持安全分析师、终端用户和不同的利益相关者。