Liu Wei-Ning, Wang Mingqian, Ding Zhiqiang, Li Yuesheng, Wang Bin
Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.
State Key Laboratory of High-Performance Roll Materials and Composite Forming, Tianjin, 300350, China.
Angew Chem Int Ed Engl. 2025 Jul;64(27):e202505333. doi: 10.1002/anie.202505333. Epub 2025 May 8.
Great achievements have been made in CO/epoxide copolymerization and dialkyl carbonate/diol polycondensation; however, efficient preparation of high-molecular-weight (>100 kDa) aliphatic polycarbonates with tunable properties and recyclability under mild conditions still remains as a great challenge. Herein, we presented a "polycondensation-depolymerization-repolymerization" strategy for structurally diverse aliphatic polycarbonates. This involved a step growth polycondensation of dialkyl carbonate and diol to low-molecular-weight (0.5-1.9 kDa) polycarbonates under atmosphere pressure, which are then utilized to produce cyclic carbonate monomers through catalytic depolymerization. The ring-opening polymerization of cyclic carbonate led to high molecular weight (>100 kDa) polymers, which can be converted back to cyclic monomer via ring-closing depolymerization or diol/dialkyl carbonate via alcoholysis, enabling chemical recycling of polycarbonates via dual closed loops. The thermal and mechanical properties of the polycarbonates can be widely adjusted by varying the substituent, and polycarbonate with four-membered spiro-cyclic substituent shows a recorded high melting temperature (217 °C) and mechanical strength within the reported polycarbonate family. A(hard)-B(soft)-A(hard) triblock thermoplastic elastomers with good mechanical performance and elastic recovery were also created by sequential polymerization. The "polycondensation-depolymerization-repolymerization" strategy provided a powerful toolbox for developing high-performance aliphatic polycarbonates.
在CO/环氧化物共聚和碳酸二烷基酯/二醇缩聚方面已经取得了巨大成就;然而,在温和条件下高效制备具有可调性能和可回收性的高分子量(>100 kDa)脂肪族聚碳酸酯仍然是一个巨大的挑战。在此,我们提出了一种用于结构多样的脂肪族聚碳酸酯的“缩聚-解聚-再聚合”策略。这包括在常压下将碳酸二烷基酯和二醇进行逐步缩聚,生成低分子量(0.5-1.9 kDa)的聚碳酸酯,然后通过催化解聚将其用于制备环状碳酸酯单体。环状碳酸酯的开环聚合产生高分子量(>100 kDa)的聚合物,该聚合物可通过闭环解聚转化回环状单体,或通过醇解转化回二醇/碳酸二烷基酯,从而通过双闭环实现聚碳酸酯的化学回收。通过改变取代基,可以广泛调节聚碳酸酯的热性能和机械性能,具有四元螺环取代基的聚碳酸酯在所报道的聚碳酸酯家族中显示出创纪录的高熔点(217°C)和机械强度。还通过顺序聚合制备了具有良好机械性能和弹性回复率的A(硬)-B(软)-A(硬)三嵌段热塑性弹性体。“缩聚-解聚-再聚合”策略为开发高性能脂肪族聚碳酸酯提供了一个强大的工具箱。