Suppr超能文献

聚合物化学循环催化科学:揭示动力学和热力学线性自由能关系

The Science of Polymer Chemical Recycling Catalysis: Uncovering Kinetic and Thermodynamic Linear Free Energy Relationships.

作者信息

McGuire Thomas M, Ning David, Buchard Antoine, Williams Charlotte K

机构信息

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.

Department of Chemistry, Green Chemistry Centre of Excellence, University of York, York YO10 5DD, U.K.

出版信息

J Am Chem Soc. 2025 Jun 23;147(26):22734-46. doi: 10.1021/jacs.5c04603.

Abstract

Polymer recycling must accelerate to limit ever-growing wastes and carbon dioxide emissions. Polymer chemical recycling to monomer enables multiple closed recycling loops, tackling the material and property losses endemic to mechanical recycling. Polyesters and polycarbonates, derived from 6- and 7-membered heterocycles, are leading sustainable materials produced by equilibrium polymerizations that can be reversed for selective and efficient chemical recycling to monomer. A systematic understanding of the depolymerization kinetic and thermodynamic structure-recycling relationships is needed; in particular, studies should focus on the low-energy and minimal-chemical additive conditions required for any larger-scale processes. Here, the depolymerization kinetic parameters, including rate constants and transition state energy barriers, are measured for a systematic series of leading aliphatic polyesters and polycarbonates. These recycling experiments are conducted under common conditions using neat polymer melts, at temperatures from 90 to 190 °C and with low loadings (1:100-1000) of a fast, selective, and commercial zinc(II)bis(2-ethylhexanoate) catalyst. The systematic kinetic measurements quantify the influences of different repeat units, substituents, and end-group chemistries on the recycling process. All the polymers conform to a linear free energy relationship between the depolymerization kinetic (Δ) and thermodynamic (Δ) energy differences. The discovery of recycling catalysis linear free energy relationships allows for the rational selection of the lowest temperature (and energy) recycling conditions, operable using neat polymers, to deliver both high monomer conversions and rates. The quantified structure-recycling relationships are also used to efficiently and selectively separate mixtures of structurally similar polymers by their quantitative chemical recycling into pure monomers.

摘要

聚合物回收利用必须加速,以限制不断增长的废弃物和二氧化碳排放。聚合物化学回收为单体可实现多个封闭的回收循环,解决机械回收中普遍存在的材料和性能损失问题。由6元和7元杂环衍生而来的聚酯和聚碳酸酯是通过平衡聚合生产的主要可持续材料,这种聚合反应可以逆转,以实现对单体的选择性高效化学回收。需要对解聚动力学和热力学结构-回收关系有系统的理解;特别是,研究应关注任何大规模工艺所需的低能量和最少化学添加剂条件。在此,针对一系列主要的脂肪族聚酯和聚碳酸酯,测量了解聚动力学参数,包括速率常数和过渡态能垒。这些回收实验是在常见条件下,使用纯聚合物熔体,在90至190°C的温度下,以及低负载量(1:100 - 1000)的快速、选择性且商业化的双(2-乙基己酸)锌(II)催化剂进行的。系统的动力学测量量化了不同重复单元、取代基和端基化学对回收过程的影响。所有聚合物都符合解聚动力学(Δ)和热力学(Δ)能量差之间的线性自由能关系。回收催化线性自由能关系的发现使得能够合理选择最低温度(和能量)的回收条件,使用纯聚合物即可操作,以实现高单体转化率和速率。量化的结构-回收关系还用于通过将结构相似的聚合物混合物定量化学回收为纯单体,来高效且选择性地分离它们。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c9c/12232312/1f2a3abd9680/ja5c04603_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验