文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

前列腺癌成像中的生成式人工智能

Generative Artificial Intelligence in Prostate Cancer Imaging.

作者信息

Haque Fahmida, Simon Benjamin D, Özyörük Kutsev B, Harmon Stephanie A, Türkbey Barış

机构信息

Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, USA.

University of Oxford, Institute of Biomedical Engineering, Department of Engineering Science, Oxford, UK.

出版信息

Balkan Med J. 2025 Jul 1;42(4):286-300. doi: 10.4274/balkanmedj.galenos.2025.2025-4-69.


DOI:10.4274/balkanmedj.galenos.2025.2025-4-69
PMID:40619793
Abstract

Prostate cancer (PCa) is the second most common cancer in men and has a significant health and social burden, necessitating advances in early detection, prognosis, and treatment strategies. Improvement in medical imaging has significantly impacted early PCa detection, characterization, and treatment planning. However, with an increasing number of patients with PCa and comparatively fewer PCa imaging experts, interpreting large numbers of imaging data is burdensome, time-consuming, and prone to variability among experts. With the revolutionary advances of artificial intelligence (AI) in medical imaging, image interpretation tasks are becoming easier and exhibit the potential to reduce the workload on physicians. Generative AI (GenAI) is a recently popular sub-domain of AI that creates new data instances, often to resemble patterns and characteristics of the real data. This new field of AI has shown significant potential for generating synthetic medical images with diverse and clinically relevant information. In this narrative review, we discuss the basic concepts of GenAI and cover the recent application of GenAI in the PCa imaging domain. This review will help the readers understand where the PCa research community stands in terms of various medical image applications like generating multi-modal synthetic images, image quality improvement, PCa detection, classification, and digital pathology image generation. We also address the current safety concerns, limitations, and challenges of GenAI for technical and clinical adaptation, as well as the limitations of current literature, potential solutions, and future directions with GenAI for the PCa community.

摘要

前列腺癌(PCa)是男性中第二常见的癌症,对健康和社会造成了重大负担,因此需要在早期检测、预后和治疗策略方面取得进展。医学成像技术的改进对早期前列腺癌的检测、特征描述和治疗规划产生了重大影响。然而,随着前列腺癌患者数量的增加,而前列腺癌成像专家相对较少,解读大量成像数据既繁重又耗时,而且专家之间容易出现差异。随着人工智能(AI)在医学成像领域的革命性进展,图像解读任务正变得更加轻松,并且显示出减轻医生工作量的潜力。生成式人工智能(GenAI)是人工智能中最近流行的一个子领域,它可以创建新的数据实例,通常类似于真实数据的模式和特征。这个人工智能新领域在生成具有多样且临床相关信息的合成医学图像方面显示出巨大潜力。在这篇叙述性综述中,我们讨论了生成式人工智能的基本概念,并涵盖了其在前列腺癌成像领域的最新应用。这篇综述将帮助读者了解前列腺癌研究界在各种医学图像应用方面的现状,比如生成多模态合成图像、改善图像质量、前列腺癌检测、分类以及数字病理图像生成。我们还讨论了生成式人工智能在技术和临床应用方面当前的安全问题、局限性和挑战,以及当前文献的局限性、潜在解决方案和前列腺癌领域生成式人工智能的未来发展方向。

相似文献

[1]
Generative Artificial Intelligence in Prostate Cancer Imaging.

Balkan Med J. 2025-7-1

[2]
Using Generative Artificial Intelligence in Health Economics and Outcomes Research: A Primer on Techniques and Breakthroughs.

Pharmacoecon Open. 2025-4-29

[3]
MRI software and cognitive fusion biopsies in people with suspected prostate cancer: a systematic review, network meta-analysis and cost-effectiveness analysis.

Health Technol Assess. 2024-10

[4]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[5]
Generative Artificial Intelligence in Nuclear Medicine Education.

J Nucl Med Technol. 2025-3-5

[6]
The impact of artificial intelligence on the endoscopic assessment of inflammatory bowel disease-related neoplasia.

Therap Adv Gastroenterol. 2025-6-23

[7]
Development and retrospective validation of an artificial intelligence system for diagnostic assessment of prostate biopsies: study protocol.

BMJ Open. 2025-7-7

[8]
Using Generative Artificial Intelligence When Writing Letters of Recommendation.

Acad Med. 2025-7-1

[9]
Short-Term Memory Impairment

2025-1

[10]
Sexual Harassment and Prevention Training

2025-1

本文引用的文献

[1]
Fast-DDPM: Fast Denoising Diffusion Probabilistic Models for Medical Image-to-Image Generation.

IEEE J Biomed Health Inform. 2025-4-28

[2]
Deep Learning to Simulate Contrast-Enhanced MRI for Evaluating Suspected Prostate Cancer.

Radiology. 2025-1

[3]
AI-ADC: Channel and Spatial Attention-Based Contrastive Learning to Generate ADC Maps from T2W MRI for Prostate Cancer Detection.

J Pers Med. 2024-10-9

[4]
Multi-modal transformer architecture for medical image analysis and automated report generation.

Sci Rep. 2024-8-20

[5]
Protecting Prostate Cancer Classification From Rectal Artifacts via Targeted Adversarial Training.

IEEE J Biomed Health Inform. 2024-7

[6]
Applications of Artificial Intelligence in Prostate Cancer Care: A Path to Enhanced Efficiency and Outcomes.

Am Soc Clin Oncol Educ Book. 2024-6

[7]
Deep learning-based whole-body PSMA PET/CT attenuation correction utilizing Pix-2-Pix GAN.

Oncotarget. 2024-5-7

[8]
Updated Primer on Generative Artificial Intelligence and Large Language Models in Medical Imaging for Medical Professionals.

Korean J Radiol. 2024-3

[9]
CycleSeg: Simultaneous synthetic CT generation and unsupervised segmentation for MR-only radiotherapy treatment planning of prostate cancer.

Med Phys. 2024-6

[10]
Discrete residual diffusion model for high-resolution prostate MRI synthesis.

Phys Med Biol. 2024-2-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索