Zheng Zhiyong, Grall Simon, Kim Soo Hyeon, Chovin Arnaud, Clement Nicolas, Demaille Christophe
CNRS, ITODYS, Université Paris Cité, Paris, F-75006, France.
IIS, LIMMS/CNRS-IIS UMI2820, The University of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505, Japan.
Chemistry. 2025 Jun 12;31(33):e202500838. doi: 10.1002/chem.202500838. Epub 2025 May 8.
Redox-DNA layers have recently shown unique properties, such as tunable reorganization energy of electron transfer that can be modulated by DNA length or hybridization state and completely suppressed under nanoconfinement. These discoveries, attributed to the changes in the solvation of the redox marker and/or fast chain dynamics, provide a unique opportunity to use electrochemical measurements as a tool to address open questions in ion solvation. Moreover, they offer a pathway to clarify the origin of the largely unsolved problem of establishing low activation barriers for biological electron transfer. Here, high-scan-rate, variable-temperature cyclic voltammetry analyzed using the Marcus formalism and molecular dynamics simulations, reveals that the total free energy barrier of electron transfer consists of two additive elements: the reorganization energy of the partially desolvated redox marker and the energy cost for solvation changes of the redox marker at the solid/liquid interface. These results may have profound implications for our understanding of electron transfer and solvation effects in redox proteins, providing opportunities for better design of artificial photosynthetic systems, biosensing, and energy conversion devices.
氧化还原-DNA层最近展现出独特的性质,比如可通过DNA长度或杂交状态调节的电子转移可调重组能,并且在纳米限域条件下能被完全抑制。这些发现归因于氧化还原标记物溶剂化作用的变化和/或快速链动力学,为利用电化学测量作为工具来解决离子溶剂化方面的开放性问题提供了独特的机会。此外,它们为阐明在很大程度上尚未解决的建立生物电子转移低活化能垒问题的根源提供了一条途径。在此,利用马库斯形式理论和分子动力学模拟对高扫描速率、可变温度循环伏安法进行分析,结果表明电子转移的总自由能垒由两个相加的元素组成:部分去溶剂化的氧化还原标记物的重组能以及氧化还原标记物在固/液界面处溶剂化变化的能量消耗。这些结果可能对我们理解氧化还原蛋白中的电子转移和溶剂化效应具有深远意义,为更好地设计人工光合系统、生物传感和能量转换装置提供了机会。