Li William, Gumera Armand, Surya Shrushti, Edwards Alex, Basiri Farynaz, Eves Caleb
Department of Ophthalmology, University of Sydney, Sydney, Australia.
Department of Surgery, University of Melbourne, Melbourne, Australia.
Neurosurg Rev. 2025 Apr 28;48(1):393. doi: 10.1007/s10143-025-03512-2.
Artificial intelligence (AI) is increasingly applied in diagnostic neurosurgery, enhancing precision and decision-making in neuro-oncology, vascular, functional, and spinal subspecialties. Despite its potential, variability in outcomes necessitates a systematic review of its performance and applicability.
A comprehensive search of PubMed, Cochrane Library, Embase, CNKI, and ClinicalTrials.gov was conducted from January 2020 to January 2025. Inclusion criteria comprised studies utilizing AI for diagnostic neurosurgery, reporting quantitative performance metrics. Studies were excluded if they focused on non-human subjects, lacked clear performance metrics, or if they did not directly relate to AI applications in diagnostic neurosurgery. Risk of bias was assessed using the PROBAST tool. This study is registered on PROSPERO, number CRD42025631040 on January 26th, 2025.
Within the 193 studies, neural networks (30%) and hybrid models (48.2%) dominated. Studies were categorised into neuro-oncology (52.69%), vascular neurosurgery (19.89%), functional neurosurgery (16.67%), and spinal neurosurgery (11.83%). Median accuracies exceeded 85% in most categories, with neuro-oncology achieving high diagnostic accuracy for tumour detection, grading, and segmentation. Vascular neurosurgery models excelled in stroke and intracranial haemorrhage detection, with median AUC values of 88% and 97%, respectively. Functional and spinal applications showed promising results, though variability in sensitivity and specificity underscores the need for standardised datasets and validation.
The review's limitations include the lack of data weighting, absence of meta-analysis, limited data collection timeframe, variability in study quality, and risk of bias in some studies.
AI in neurosurgery shows potential for improving diagnostic accuracy across neurosurgical domains. Models used for stroke, ICH, aneurysm detection, and functional conditions such as Parkinson's disease and epilepsy demonstrate promising results. However, variability in sensitivity, specificity, and AUC values across studies underscores the need for further research and model refinement to ensure clinical viability and effectiveness.
人工智能(AI)在诊断性神经外科手术中的应用日益广泛,提高了神经肿瘤学、血管、功能和脊柱亚专业领域的精准度和决策水平。尽管其具有潜力,但结果的变异性使得有必要对其性能和适用性进行系统评价。
于2020年1月至2025年1月对PubMed、Cochrane图书馆、Embase、中国知网和ClinicalTrials.gov进行全面检索。纳入标准包括使用人工智能进行诊断性神经外科手术且报告定量性能指标的研究。如果研究聚焦于非人类受试者、缺乏明确的性能指标或与人工智能在诊断性神经外科手术中的应用无直接关联,则将其排除。使用PROBAST工具评估偏倚风险。本研究已在PROSPERO注册,注册号为CRD42025631040,注册时间为2025年1月26日。
在193项研究中,神经网络(30%)和混合模型(48.2%)占主导地位。研究分为神经肿瘤学(52.69%)、血管神经外科(19.89%)、功能神经外科(16.67%)和脊柱神经外科(11.83%)。大多数类别中的中位准确率超过85%,神经肿瘤学在肿瘤检测、分级和分割方面实现了较高的诊断准确率。血管神经外科模型在中风和颅内出血检测方面表现出色,中位AUC值分别为88%和97%。功能和脊柱应用显示出有前景的结果,尽管敏感性和特异性的变异性凸显了对标准化数据集和验证的需求。
该综述的局限性包括缺乏数据加权、未进行荟萃分析、数据收集时间框架有限、研究质量存在变异性以及部分研究存在偏倚风险。
神经外科手术中的人工智能在提高整个神经外科领域的诊断准确性方面显示出潜力。用于中风、脑出血(ICH)、动脉瘤检测以及帕金森病和癫痫等功能疾病的模型显示出有前景的结果。然而,各研究中敏感性、特异性和AUC值的变异性凸显了进一步研究和模型优化的必要性,以确保临床可行性和有效性。