O'Neill Stephen J K, Huang Zehuan, Chen Xiaoyi, Sala Renata L, McCune Jade A, Malliaras George G, Scherman Oren A
Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK.
Sci Adv. 2024 Jul 19;10(29):eadn5142. doi: 10.1126/sciadv.adn5142. Epub 2024 Jul 17.
Recent progress in the development of synthetic polymer networks has enabled the next generation of hydrogel-based machines and devices. The ability to mimic the mechanical and electrical properties of human tissue gives great potential toward the fields of bioelectronics and soft robotics. However, fabricating hydrogel devices that display high ionic conductivity while maintaining high stretchability and softness remains unmet. Here, we synthesize supramolecular poly(ionic) networks, which display high stretchability (>1500%), compressibility (>90%), and rapid self-recovery (<30 s), while achieving ionic conductivities of up to 0.1 S cm . Dynamic cross-links give rise to inter-layer adhesion and a stable interface is formed on account of ultrahigh binding affinities (>10 M). Superior adherence between layers enabled the fabrication of an intrinsically stretchable hydrogel power source, paving the way for the next generation of multi-layer tissue mimetic devices.
合成聚合物网络开发方面的最新进展已促成了下一代基于水凝胶的机器和设备。模仿人体组织机械和电学特性的能力为生物电子学和软机器人技术领域带来了巨大潜力。然而,制造出既具有高离子电导率又能保持高拉伸性和柔软性的水凝胶设备这一目标仍未实现。在此,我们合成了超分子聚(离子)网络,其具有高拉伸性(>1500%)、压缩性(>90%)和快速自我恢复能力(<30秒),同时实现了高达0.1 S cm的离子电导率。动态交联产生层间附着力,由于超高的结合亲和力(>10 M)形成了稳定的界面。层间的优异附着力使得能够制造出一种本质上可拉伸的水凝胶电源,为下一代多层组织模拟设备铺平了道路。