Suppr超能文献

使用TARDIS对基于液相色谱-质谱联用的代谢组学和脂质组学中的色谱峰进行自动整合和质量评估。

Automated Integration and Quality Assessment of Chromatographic Peaks in LC-MS-Based Metabolomics and Lipidomics Using TARDIS.

作者信息

Vangeenderhuysen Pablo, Vynck Matthijs, Pomian Beata, De Windt Kimberly, Callemeyn Emile, De Paepe Ellen, De Commer Lindsey, Raes Jeroen, Nawrot Tim, Rainer Johannes, Hemeryck Lieselot Y, Vanhaecke Lynn

机构信息

Laboratory of Integrative Metabolomics (LIMET), Ghent University, Merelbeke 9820, Belgium.

Department of Public Health and Primary Care, Ghent University, Ghent 9000, Belgium.

出版信息

Anal Chem. 2025 May 13;97(18):9927-9934. doi: 10.1021/acs.analchem.5c00567. Epub 2025 Apr 28.

Abstract

In recent years, liquid chromatography coupled to mass spectrometry (LC-MS) has emerged as the main technology to measure the whole of small molecules (the metabolome) in a diversity of matrices. Within the field of computational metabolomics, significant efforts have been made in the development of tools to (pre)process untargeted LC-MS data. However, tools that circumvent the time-consuming, manual preprocessing of targeted LC-MS data with vendor-specific software remain sparse. We therefore present TARDIS, an open-source R package for the analysis of targeted LC-MS metabolomics and lipidomics data. Both established (area under the curve, maximum intensity and points over the peak) and recently developed (custom signal-to-noise ratio and bell-curve similarity) quality metrics were included to offer increased efficiency of peak quality evaluation. The robustness of TARDIS' peak integration was demonstrated through a quantitative comparison to state-of-the-art vendor software. To this end, applicability at a large scale ( = 1786) was validated across three distinct biofluids (stool, saliva and urine) and two LC-MS instruments, using data from the FAME, ENVIRONAGE, and FGFP cohort studies. In conclusion, TARDIS offers a robust and scalable open-source solution for the targeted analysis of LC-MS metabolomics and lipidomics data. TARDIS and its source code are freely available at https://github.com/UGent-LIMET/TARDIS.

摘要

近年来,液相色谱-质谱联用(LC-MS)已成为测量多种基质中所有小分子(代谢组)的主要技术。在计算代谢组学领域,人们在开发用于(预)处理非靶向LC-MS数据的工具方面付出了巨大努力。然而,能够避免使用特定供应商软件对靶向LC-MS数据进行耗时的手动预处理的工具仍然很少。因此,我们提出了TARDIS,这是一个用于分析靶向LC-MS代谢组学和脂质组学数据的开源R包。我们纳入了既定的(曲线下面积、最大强度和峰上点数)和最近开发的(自定义信噪比和钟形曲线相似度)质量指标,以提高峰质量评估的效率。通过与最先进的供应商软件进行定量比较,证明了TARDIS峰积分的稳健性。为此,利用来自FAME、ENVIRONAGE和FGFP队列研究的数据,在三种不同的生物流体(粪便、唾液和尿液)和两台LC-MS仪器上验证了其在大规模(n = 1786)上的适用性。总之,TARDIS为靶向分析LC-MS代谢组学和脂质组学数据提供了一个稳健且可扩展的开源解决方案。TARDIS及其源代码可在https://github.com/UGent-LIMET/TARDIS上免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验