Wang Yibing, Pang Yiqun, Wang Siji, Zhang Xiubing, Pang Yunxiang, Li Houlin, Wang Xiaobing
Sports & Medicine Integrative Innovation Center, Capital University of Physical Education and Sports, Beijing, China.
School of Physical Education, Southwest Petroleum University, Chengdu, China.
Sci Prog. 2025 Apr-Jun;108(2):368504251337973. doi: 10.1177/00368504251337973. Epub 2025 Apr 29.
The rapid development of race-walking techniques and the growing global competition have heightened the importance of optimizing the relationship between technique and speed. This study aims to investigate the interaction between race-walking speed and technique and to establish the optimal combination of technical factors that contribute to peak performance. A "Speed-Technical" model was developed using random forest algorithms, with the SHAPley (Shap) method applied to evaluate the influence of various technical indicators on race-walking speed. The analysis revealed the following hierarchy of factors impacting speed: Step frequency > Step length > Thigh angle > Flight distance > Upper-forearm angle > Head undulation distance > Landing angle > Rear pedal angle > Backpedal distance > Back swing distance > Arm swing angle > Front support distance > Front swing distance > Flight time. The optimal technical ranges for maximizing race-walking speed were found to be: Step frequency (>230 steps/min), Step length (>1.12 m), Thigh angle (50°-65°), Flight distance (0.26 m), Upper-forearm angle (77°), Head undulation distance (0.6-0.8 m), Landing angle (25°-30°), Rear pedal angle (32°-39°), Backpedal distance (0.37-0.43 m), Back swing distance (0.43-0.47 m), Arm swing angle (57°-62°), Front support distance (0.19-0.25 m), Front swing distance (0.25-0.30 m), and Flight time (<0.042 s). The study identifies the key technical factors that most significantly impact race-walking speed, offering novel insights that complement previous findings while highlighting differences in optimal ranges compared to traditional models. These results enhance our understanding of the intricate relationship between technique and speed, providing valuable implications for training and performance optimization.
竞走技术的快速发展以及全球竞争的日益激烈,凸显了优化技术与速度之间关系的重要性。本研究旨在探究竞走速度与技术之间的相互作用,并确定有助于达到最佳成绩的技术因素的最佳组合。使用随机森林算法开发了一个“速度 - 技术”模型,并应用SHAPley(Shap)方法来评估各种技术指标对竞走速度的影响。分析揭示了影响速度的因素层次如下:步频>步长>大腿角度>腾空距离>前臂上摆角度>头部起伏距离>着地角度>后蹬角度>后蹬距离>后摆距离>手臂摆动角度>前支撑距离>前摆距离>腾空时间。发现使竞走速度最大化的最佳技术范围为:步频(>230步/分钟)、步长(>1.12米)、大腿角度(50° - 65°)、腾空距离(0.26米)、前臂上摆角度(77°)、头部起伏距离(0.6 - 0.8米)、着地角度(25° - 30°)、后蹬角度(32° - 39°)、后蹬距离(0.37 - 0.43米)、后摆距离(0.43 - 0.47米)、手臂摆动角度(57° - 62°)、前支撑距离(0.19 - 0.25米)、前摆距离(0.25 - 0.30米)、腾空时间(<0.042秒)。该研究确定了对竞走速度影响最显著的关键技术因素,提供了新颖的见解,补充了先前的研究结果,同时突出了与传统模型相比最佳范围的差异。这些结果加深了我们对技术与速度之间复杂关系的理解,为训练和成绩优化提供了有价值的启示。