Teshome Tamiru
Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, College of Natural and Applied Sciences, Department of Mathematics, Physics and Statistics P. O. Box 16417 Addis Ababa Ethiopia
RSC Adv. 2025 Apr 28;15(17):13703-13711. doi: 10.1039/d5ra01911g. eCollection 2025 Apr 22.
The scarcity of suitable quantum spin Hall (QSH) insulators with a significant bulk gap poses a major challenge to the widespread application of the QSH effect. This study employs first-principles calculations to investigate the stability, electronic structure, and topological properties of a fully oxygenated bismuth arsenide system. Without the influence of spin-orbit coupling (SOC), the valence and conduction bands at the -point exhibit a semimetallic nature. However, introducing SOC leads to a substantial 352 meV band gap, which allows operation at room temperature. The calculation of the topological invariant reveals , and the presence of topologically protected edge states in a Dirac cone at the point confirms the existence of a non-trivial topological state. The epitaxial growth of β-BiAsO on a SiO substrate maintains the band topology of β-BiAsO, spin lock with SOC effect. Additionally, the fully oxidized surfaces of β-BiAsO are inherently resistant to surface oxidation and degradation, suggesting a promising approach for developing room-temperature topological quantum devices. These findings not only introduce new vitality into the 2D group-VA materials family and enrich the available candidate materials in this field but also highlight the potential of these 2D semiconductors as appealing ultrathin materials for future flexible electronics and optoelectronics devices.
具有显著体能隙的合适量子自旋霍尔(QSH)绝缘体的稀缺,对QSH效应的广泛应用构成了重大挑战。本研究采用第一性原理计算来研究全氧化砷化铋体系的稳定性、电子结构和拓扑性质。在没有自旋轨道耦合(SOC)影响的情况下,Γ点处的价带和导带呈现半金属性质。然而,引入SOC会导致出现352毫电子伏特的显著带隙,这使得该体系能够在室温下运行。拓扑不变量的计算结果显示为 ,并且在Γ点处狄拉克锥中拓扑保护边缘态的存在证实了非平凡拓扑态的存在。β-BiAsO在SiO衬底上的外延生长保持了β-BiAsO的能带拓扑结构,并与SOC效应实现自旋锁定。此外,β-BiAsO的完全氧化表面具有固有的抗表面氧化和降解能力,这为开发室温拓扑量子器件提供了一种有前景的方法。这些发现不仅为二维VA族材料家族注入了新的活力,丰富了该领域可用的候选材料,还突出了这些二维半导体作为未来柔性电子和光电器件有吸引力的超薄材料的潜力。