Mei Yu-Kun, Zhu Ya-Wen, Wei Yu-Wen, Li Shu-di, Zhou Xuan, Yao Ya-Nan, Qiu Jing
Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
Jiangsu Province Key Laboratory of Oral Diseases Nanjing China.
RSC Adv. 2025 Apr 28;15(17):13603-13617. doi: 10.1039/d5ra00301f. eCollection 2025 Apr 22.
Previous studies on polydopamine (PDA)-modified titanium implants have primarily focused on single-metal-ion systems (, Ag, Cu, or Zn), while overlooking the interplay between corrosion resistance, antioxidant retention, and antimicrobial efficacy under clinically relevant oxidative conditions. Here, we present a comparative analysis of Ag-, Cu-, and Zn-integrated PDA coatings fabricated a two-step coordination strategy, addressing these limitations through systematic multi-parameter evaluation. Unlike prior studies, this study reveals distinct metal-PDA interaction mechanisms: XPS/EDS analyses confirm Zn and Cu form coordination complexes with PDA's catechol groups, whereas Ag undergoes reduction to metallic nanoparticles (Ag), leading to divergent ion-release profiles (Zn > Cu > Ag) and biofunctional outcomes. Electrochemical testing under HO-simulated oxidative stress demonstrates Zn-PDA coatings exhibit superior corrosion resistance (polarization resistance: 4330 3900 and 2850 kΩ cm for Cu-PDA and Ag-PDA, respectively), while Ag-PDA achieves the highest antibacterial efficacy (>95% reduction against and ). Notably, Zn/Cu-PDA coatings retain >80% of PDA's intrinsic antioxidant capacity, in contrast to Ag-PDA, which exhibits significant antioxidant depletion due to redox interference. rat models further differentiate our approach: all coatings show comparable soft-tissue integration and systemic biosafety, contrasting with earlier reports of Ag-induced cytotoxicity. By elucidating metal-specific performance trade-offs and establishing a design framework to balance corrosion resistance, ROS scavenging, and antimicrobial activity, this work advances clinically adaptable strategies for enhancing peri-implant tissue stability.
先前关于聚多巴胺(PDA)修饰钛植入物的研究主要集中在单一金属离子体系(如银、铜或锌),而忽略了在临床相关氧化条件下耐腐蚀性、抗氧化剂保留和抗菌效果之间的相互作用。在此,我们通过两步配位策略对整合了银、铜和锌的PDA涂层进行了比较分析,通过系统的多参数评估解决了这些局限性。与先前的研究不同,本研究揭示了不同的金属 - PDA相互作用机制:XPS/EDS分析证实锌和铜与PDA的儿茶酚基团形成配位络合物,而银被还原为金属纳米颗粒(Ag),导致不同的离子释放曲线(锌>铜>银)和生物功能结果。在过氧化氢模拟氧化应激下的电化学测试表明,锌 - PDA涂层表现出优异的耐腐蚀性(极化电阻:铜 - PDA和银 - PDA分别为4330、3900和2850 kΩ·cm²),而银 - PDA具有最高的抗菌效果(对大肠杆菌和金黄色葡萄球菌的减少率>95%)。值得注意的是,锌/铜 - PDA涂层保留了>80%的PDA固有抗氧化能力,与之形成对比的是,银 - PDA由于氧化还原干扰而表现出显著的抗氧化剂消耗。大鼠模型进一步区分了我们的方法:所有涂层在软组织整合和全身生物安全性方面表现相当,这与早期关于银诱导细胞毒性的报道形成对比。通过阐明金属特异性性能权衡并建立一个平衡耐腐蚀性、活性氧清除和抗菌活性的设计框架,这项工作推进了增强种植体周围组织稳定性的临床适用策略。
Molecules. 2023-5-23
Colloids Surf B Biointerfaces. 2025-1
Micromachines (Basel). 2025-7-31
Adv Colloid Interface Sci. 2024-12
Periodontol 2000. 2024-2-2