文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Dose-dependent enhancement of in vitro osteogenic activity on strontium-decorated polyetheretherketone.

作者信息

Zhang Yongheng, Liu Lvhua, Li Mengqi, Wang Shufu, Fu Jingjing, Yang Mingyuan, Yan Chunxi, Liu Ying, Zheng Yanyan

机构信息

Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.

Department of Stomatology, North Sichuan Medical College, Nanchong, China.

出版信息

Sci Rep. 2025 Jan 24;15(1):3063. doi: 10.1038/s41598-025-86561-3.


DOI:10.1038/s41598-025-86561-3
PMID:39856116
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11760343/
Abstract

Polyetheretherketone (PEEK) is widely used in orthopedic and dental implants due to its excellent mechanical properties, chemical stability, and biocompatibility. However, its inherently bioinert nature makes it present weak osteogenic activity, which greatly restricts its clinical adoption. Herein, strontium (Sr) is incorporated onto the surface of PEEK using mussel-inspired polydopamine coating to improve its osteogenic activity. X-ray photoelectron spectroscopy and ion release assay results confirm that different concentrations of Sr are incorporated onto the PEEK substrate surfaces. The strontium-modified PEEK samples show a stable Sr ion release in 35 days of detection. Better results of MC3T3-E1 pre-osteoblasts adhesion, spreading, and proliferation can be observed in strontium-modified PEEK groups, which demonstrates strontium-modified PEEK samples with the improved MC3T3-E1 pre-osteoblasts compatibility. The boosted osteogenic activity of strontium-modified PEEK samples has been demonstrated by the better performed of ALP activity, extracellular matrix mineralization, collagen secretion, and the remarkable up-regulation of ALP, OCN, OPN, Runx2, Col-I, BSP, and OSX of the MC3T3-E1 pre-osteoblasts. Additionally, the strontium-modified PEEK samples exhibit a dose-dependent enhancement of osteoblasts compatibility and osteogenic activity, and the PEEK-Sr10 group shows the best. These findings indicate that strontium-decorated PEEK implants show promising application in orthopedic and dental implants.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/8679d752a695/41598_2025_86561_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/5f65fdccc4fa/41598_2025_86561_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/7862fa28da60/41598_2025_86561_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/3377e393c482/41598_2025_86561_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/93e41afca858/41598_2025_86561_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/bd7a474e0c8d/41598_2025_86561_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/2db1085a5a6a/41598_2025_86561_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/e35161f34dc0/41598_2025_86561_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/8679d752a695/41598_2025_86561_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/5f65fdccc4fa/41598_2025_86561_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/7862fa28da60/41598_2025_86561_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/3377e393c482/41598_2025_86561_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/93e41afca858/41598_2025_86561_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/bd7a474e0c8d/41598_2025_86561_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/2db1085a5a6a/41598_2025_86561_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/e35161f34dc0/41598_2025_86561_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3841/11760343/8679d752a695/41598_2025_86561_Fig8_HTML.jpg

相似文献

[1]
Dose-dependent enhancement of in vitro osteogenic activity on strontium-decorated polyetheretherketone.

Sci Rep. 2025-1-24

[2]
Enhanced osteogenic activity of phosphorylated polyetheretherketone via surface-initiated grafting polymerization of vinylphosphonic acid.

Colloids Surf B Biointerfaces. 2018-10-13

[3]
Enhanced osteogenesis and antibacterial activity of dual-functional PEEK implants via biomimetic polydopamine modification with chondroitin sulfate and levofloxacin.

J Biomater Sci Polym Ed. 2024-12

[4]
Micro-porous polyetheretherketone implants decorated with BMP-2 via phosphorylated gelatin coating for enhancing cell adhesion and osteogenic differentiation.

Colloids Surf B Biointerfaces. 2018-5-15

[5]
Strontium-doped bioactive glass-functionalized polyetheretherketone enhances osseointegration by facilitating cell adhesion.

Colloids Surf B Biointerfaces. 2024-9

[6]
Strontium/adiponectin co-decoration modulates the osteogenic activity of nano-morphologic polyetheretherketone implant.

Colloids Surf B Biointerfaces. 2018-12-20

[7]
Surface modification of polyetheretherketone (PEEK) to enhance osteointegration by grafting strontium Eucommia ulmoides polysaccharides.

Int J Biol Macromol. 2022-6-30

[8]
Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material.

Int J Nanomedicine. 2014-8-18

[9]
Metal element-fusion peptide heterostructured nanocoatings endow polyetheretherketone implants with robust anti-bacterial activities and osseointegration.

Nanoscale. 2024-7-11

[10]
Surface Modification of Poly(ether ether ketone) by Simple Chemical Grafting of Strontium Chondroitin Sulfate to Improve its Anti-Inflammation, Angiogenesis, Osteogenic Properties.

Adv Healthc Mater. 2022-7

引用本文的文献

[1]
Metal-polydopamine coordinated coatings on titanium surface: enhancing corrosion resistance and biological property.

RSC Adv. 2025-4-28

本文引用的文献

[1]
Comprehensive review of polyetheretherketone use in dentistry.

J Prosthodont Res. 2025-4-14

[2]
Titanium micro-nano textured surface with strontium incorporation improves osseointegration: an in vivo and in vitro study.

J Appl Oral Sci. 2024

[3]
ECM-Mimicking Strontium-Doped Nanofibrous Microspheres for Periodontal Tissue Regeneration in Osteoporosis.

ACS Appl Mater Interfaces. 2024-8-7

[4]
In vitro antifungal and physicochemical properties of polymerized acrylic resin containing strontium-modified phosphate-based glass.

BMC Oral Health. 2024-7-10

[5]
Biphasic bone substitutes coated with PLGA incorporating therapeutic ions Sr and Mg: cytotoxicity cascade and response of immune and bone regeneration.

Front Bioeng Biotechnol. 2024-6-24

[6]
TiCT MXene-Decorated 3D-Printed Ceramic Scaffolds for Enhancing Osteogenesis by Spatiotemporally Orchestrating Inflammatory and Bone Repair Responses.

Adv Sci (Weinh). 2024-9

[7]
Polydopamine coating for enhanced electrostatic adsorption of methylene blue by multiwalled carbon nanotubes in alkaline environments.

J Colloid Interface Sci. 2024-12

[8]
Bioactive chitosan/polydopamine nanospheres coating on carbon fiber towards strengthening epoxy composites.

Int J Biol Macromol. 2024-8

[9]
Strontium-doped bioactive glass-functionalized polyetheretherketone enhances osseointegration by facilitating cell adhesion.

Colloids Surf B Biointerfaces. 2024-9

[10]
Alginate-containing 3D-printed hydrogel scaffolds incorporated with strontium promotes vascularization and bone regeneration.

Int J Biol Macromol. 2024-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索