Gao Letao, Zhang Yumeng, Ge Fang, Li Shanshan, Guo Yuming, Song Jiangning, Yu Dong-Jun
School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China.
Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
J Chem Inf Model. 2025 May 12;65(9):4674-4686. doi: 10.1021/acs.jcim.5c00055. Epub 2025 Apr 29.
T-cell receptors (TCRs) play a pivotal role in the adaptive immune system, and understanding their antigen recognition mechanism remains a critical area of research. With the increasing availability of binding and interaction data between TCRs and peptide-major histocompatibility complexes (pMHCs), data-driven computational methods are emerging as powerful tools with significant potential for advancement. In this study, we collected and curated comprehensive sequence and structure data sets of TCRs from human CD8 T-cells and cognate epitopes presented by MHC class I molecules. We developed two innovative computational frameworks: SG-TPMI, a lightweight, extensible, and structure-guided model for predicting TCR-pMHC binding specificity, and Seq/Struct-TCS, a pair of models (sequence-based and structure-based) for predicting contact sites within TCR-pMHC complexes. Notably, we directly integrated MHC-I alpha helices (or pseudosequences) and structural information on the protein complex into the prediction models. Our comprehensive modeling approach enabled quantitative investigations of TCR-pMHC interaction mechanisms, empowering SG-TPMI and Struct-TCS to achieve performances comparable to those of state-of-the-art methods. Furthermore, our results highlight the necessity of CDR1 and CDR2 loops as well as MHC restriction in pan-specific TCR-pMHC interaction prediction, providing new insights into TCR recognition. In summary, we not only propose SG-TPMI as an effective computational method for predicting TCR-pMHC binary interactions but also introduce the Seq/Struct-TCS design for predicting TCR interacting sites with peptide or MHC alpha helices.
T细胞受体(TCRs)在适应性免疫系统中发挥着关键作用,了解其抗原识别机制仍然是一个关键的研究领域。随着TCR与肽-主要组织相容性复合体(pMHCs)之间结合和相互作用数据的日益丰富,数据驱动的计算方法正成为具有巨大发展潜力的强大工具。在本研究中,我们收集并整理了来自人类CD8 T细胞的TCRs以及MHC I类分子呈递的同源表位的全面序列和结构数据集。我们开发了两个创新的计算框架:SG-TPMI,一种轻量级、可扩展且基于结构的预测TCR-pMHC结合特异性的模型;以及Seq/Struct-TCS,一对用于预测TCR-pMHC复合物内接触位点的模型(基于序列和基于结构)。值得注意的是,我们将MHC-Iα螺旋(或假序列)和蛋白质复合物的结构信息直接整合到预测模型中。我们的综合建模方法能够对TCR-pMHC相互作用机制进行定量研究,使SG-TPMI和Struct-TCS能够实现与最先进方法相当的性能。此外,我们的结果突出了互补决定区1(CDR1)和互补决定区2(CDR2)环以及MHC限制在泛特异性TCR-pMHC相互作用预测中的必要性,为TCR识别提供了新的见解。总之,我们不仅提出SG-TPMI作为预测TCR-pMHC二元相互作用的有效计算方法,还介绍了用于预测TCR与肽或MHCα螺旋相互作用位点的Seq/Struct-TCS设计。