McMaster Benjamin, Thorpe Christopher J, Rossjohn Jamie, Deane Charlotte M, Koohy Hashem
Koohy Lab, Medical Research Council Translational Immune Discovery Unit (MRC TIDU), Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom.
Front Immunol. 2024 Dec 2;15:1491656. doi: 10.3389/fimmu.2024.1491656. eCollection 2024.
T cells form one of the key pillars of adaptive immunity. Using their surface bound T cell antigen receptors (TCRs), these cells screen millions of antigens presented by major histocompatibility complex (MHC) or MHC-like molecules. In other protein families, the dynamics of protein-protein interactions have important implications for protein function. Case studies of TCR:class I peptide-MHCs (pMHC-Is) structures have reported mixed results on whether the binding interfaces undergo conformational change during engagement and no robust statistical quantification has been done to generalise these results. Thus, it remains an open question of whether movement occurs in the binding interface that enables the recognition and activation of T cells.
In this work, we quantify the conformational changes in the TCR:pMHC-I binding interface by creating a dataset of 391 structures, comprising 22 TCRs, 19 MHC alleles, and 79 peptide structures in both unbound (apo) and bound (holo) conformations.
In support of some case studies, we demonstrate that all complementarity determining region (CDR) loops move to a certain extent but only CDR3α and CDR3β loops modify their shape when binding pMHC-Is. We also map the contacts between TCRs and pMHC-Is, generating a novel fingerprint of TCRs on MHC molecules and show that the CDR3α tends to bind the N-terminus of the peptide and the CDR3β tends to bind the C-terminus of the peptide. Finally, we show that the presented peptides can undergo conformational changes when engaged by TCRs, as has been reported in past literature, but novelly show these changes depend on how the peptides are anchored in the MHC binding groove.
Our work has implications in understanding the behaviour of TCR:pMHC-I interactions and providing insights that can be used for modelling Tcell antigen specificity, an ongoing grand challenge in immunology.
T细胞构成适应性免疫的关键支柱之一。这些细胞利用其表面结合的T细胞抗原受体(TCR)筛选由主要组织相容性复合体(MHC)或MHC类分子呈递的数百万种抗原。在其他蛋白质家族中,蛋白质-蛋白质相互作用的动力学对蛋白质功能具有重要影响。关于TCR与I类肽-MHC(pMHC-I)结构的案例研究报告了结合界面在结合过程中是否发生构象变化的混合结果,并且尚未进行有力的统计量化来概括这些结果。因此,结合界面是否发生运动从而实现T细胞的识别和激活仍是一个悬而未决的问题。
在这项工作中,我们通过创建一个包含391个结构的数据集来量化TCR与pMHC-I结合界面的构象变化,该数据集包括22种TCR、19种MHC等位基因以及79种处于未结合(无配体)和结合(有配体)构象的肽结构。
支持一些案例研究的结果,我们证明所有互补决定区(CDR)环都会在一定程度上移动,但只有CDR3α和CDR3β环在结合pMHC-I时会改变其形状。我们还绘制了TCR与pMHC-I之间的接触图,生成了TCR在MHC分子上的新指纹,并表明CDR3α倾向于结合肽的N端,而CDR3β倾向于结合肽的C端。最后,我们表明,如过去文献所报道,当与TCR结合时,呈递的肽会发生构象变化,但新颖的是,我们表明这些变化取决于肽如何锚定在MHC结合槽中。
我们的工作对于理解TCR与pMHC-I相互作用的行为具有重要意义,并提供了可用于模拟T细胞抗原特异性的见解,这是免疫学中一个持续存在的重大挑战。