Hüppe Lukas, Bahlburg Dominik, Driscoll Ryan, Helfrich-Förster Charlotte, Meyer Bettina
Neurobiology and Genetics, University of Würzburg, Biocenter, Theodor-Boveri-Institute, Würzburg, Germany.
Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
Elife. 2025 Apr 29;14:RP103096. doi: 10.7554/eLife.103096.
Antarctic krill is a species with fundamental importance for the Southern Ocean ecosystem. Their large biomass and synchronized movements, like diel vertical migration (DVM), significantly impact ecosystem structure and the biological carbon pump. Despite decades of research, the mechanistic basis of DVM remains unclear. Circadian clocks help organisms anticipate daily environmental changes, optimizing adaptation. In this study, we used a recently developed activity monitor to record swimming activity of individual, wild-caught krill under various light conditions and across different seasons. Our data demonstrate how the krill circadian clock, in combination with light, drives a distinct bimodal pattern of swimming activity, which could facilitate ecologically important behavioral patterns, such as DVM. Rapid damping and flexible synchronization of krill activity indicate that the krill clock is adapted to a life at high latitudes and seasonal activity recordings suggest a clock-based mechanism for the timing of seasonal processes. Our findings advance our understanding of biological timing and high-latitude adaptation in this key species.
南极磷虾是对南大洋生态系统具有至关重要意义的物种。它们庞大的生物量和同步的活动,如昼夜垂直迁移(DVM),对生态系统结构和生物碳泵有重大影响。尽管经过了数十年的研究,但DVM的机制基础仍不清楚。生物钟帮助生物体预测每日环境变化,优化适应性。在本研究中,我们使用了最近开发的活动监测器,记录了在各种光照条件下和不同季节中,野外捕获的单个磷虾的游泳活动。我们的数据表明,磷虾生物钟与光照相结合,如何驱动一种独特的双峰游泳活动模式,这可能有助于诸如DVM等具有重要生态意义的行为模式。磷虾活动的快速衰减和灵活同步表明,磷虾生物钟适应了高纬度地区的生活,而季节性活动记录表明存在一种基于生物钟的季节性过程计时机制。我们的研究结果推进了我们对这一关键物种的生物计时和高纬度适应的理解。