Suppr超能文献

在用于反应化学的神经网络中纳入物理知识雾化约束条件。

Including Physics-Informed Atomization Constraints in Neural Networks for Reactive Chemistry.

作者信息

Zhang Shuhao, Chigaev Michael, Isayev Olexandr, Messerly Richard A, Lubbers Nicholas

机构信息

Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

出版信息

J Chem Inf Model. 2025 May 12;65(9):4367-4380. doi: 10.1021/acs.jcim.5c00341. Epub 2025 Apr 29.

Abstract

Machine learning interatomic potentials (MLIPs) have emerged as powerful tools for investigating atomistic systems with high accuracy and a relatively low computational cost. However, a common and unaddressed challenge with many current neural network (NN) MLIP models is their limited ability to accurately predict the relative energies of systems containing isolated or nearly isolated atoms, which appear in various reactive processes. To address this limitation, we present a mathematical technique for modifying any existing atom-centered NN architecture to account for the energies of isolated atoms. The result produces a consistent prediction of the atomization energy (AE) of a system using minimal constraints on the model. Using this technique, we build a model architecture that we call hierarchically interacting particle neural network (HIP-NN)-AE, an AE-constrained version of the HIP-NN, as well as ANI-AE, the AE-constrained version of the accurate NN engine for molecular energies (ANI). Our results demonstrate AE consistency of AE-constrained models, which drastically improves the AE predictions for the models. We compare the AE-constrained approach to unconstrained models as well as models from the literature in other scenarios, such as bond dissociation energies, bond dissociation pathways, and extensibility tests. These results show that the constraints improve the model performance in some of these tasks and do not negatively affect the performance on any tasks. The AE constraint approach thus offers a robust solution to the challenges posed by isolated atoms in energy prediction tasks.

摘要

机器学习原子间势(MLIPs)已成为研究原子系统的强大工具,具有高精度和相对较低的计算成本。然而,许多当前的神经网络(NN)MLIP模型面临一个常见且未解决的挑战,即它们准确预测包含孤立或近乎孤立原子的系统相对能量的能力有限,而这些原子出现在各种反应过程中。为了解决这一限制,我们提出了一种数学技术,用于修改任何现有的以原子为中心的NN架构,以考虑孤立原子的能量。结果是在对模型施加最小约束的情况下,对系统的原子化能(AE)产生一致的预测。使用这种技术,我们构建了一种模型架构,我们称之为层次相互作用粒子神经网络(HIP-NN)-AE,它是HIP-NN的AE约束版本,以及ANI-AE,它是用于分子能量的精确NN引擎(ANI)的AE约束版本。我们的结果证明了AE约束模型的AE一致性,这极大地改善了模型的AE预测。我们将AE约束方法与无约束模型以及文献中其他场景下的模型进行比较,如键解离能、键解离途径和可扩展性测试。这些结果表明,这些约束在其中一些任务中提高了模型性能,并且不会对任何任务的性能产生负面影响。因此,AE约束方法为能量预测任务中孤立原子带来的挑战提供了一个强大的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c50/12076496/1522e123e63b/ci5c00341_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验