Suppr超能文献

机器学习驱动的头颈部鳞状细胞癌中外泌体相关基因的鉴定用于预后评估和药物反应预测

Machine Learning-Driven Identification of Exosome-Related Genes in Head and Neck Squamous Cell Carcinoma for Prognostic Evaluation and Drug Response Prediction.

作者信息

Cai Hua, Zhou Liuqing, Hu Yao, Zhou Tao

机构信息

Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Department of Otorhinolaryngology, The Central Hospital of Wuhan, Wuhan 430021, China.

出版信息

Biomedicines. 2025 Mar 23;13(4):780. doi: 10.3390/biomedicines13040780.

Abstract

This study integrated four Gene Expression Omnibus (GEO) datasets to identify disease-specific feature genes in head and neck squamous cell carcinoma (HNSCC) through differential expression analysis with batch effect correction. : The GeneCards database was used to find genes related to exosomes, and samples were categorized into groups with high and low expression levels based on these feature genes. Functional and pathway enrichment analyses (GO, KEGG, and GSEA) were used to investigate the possible biological mechanisms underlying feature genes. A predictive model was produced by using machine learning algorithms (LASSO regression, SVM, and random forest) to find disease-specific feature genes. Receiver operating characteristic (ROC) curve analysis was used to assess the model's effectiveness. The diagnostic model showed excellent predictive accuracy through external data GSE83519 validation. : This analysis highlighted 22 genes with significant differential expression. A predictive model based on five important genes (, , , , and ) was produced by using machine learning algorithms. and showed relatively high predictive performance. Using the ssGSEA algorithm, three key genes (, , and ) were identified as strongly linked to immune regulation, immune response suppression, and critical signaling pathways involved in HNSCC progression. Matching HNSCC feature gene expression profiles with DSigDB compound signatures uncovered potential therapeutic targets. Molecular docking simulations identified ligands with high binding affinity and stability, notably C5 and Hoechst 33258, which were prioritized for further validation and potential drug development. : This study employs a novel diagnostic model for HNSCC constructed using machine learning technology, which can provide support for the early diagnosis of HNSCC and thus contribute to improving patient treatment plans and clinical management strategies.

摘要

本研究整合了四个基因表达综合数据库(GEO)数据集,通过批次效应校正的差异表达分析来鉴定头颈部鳞状细胞癌(HNSCC)中的疾病特异性特征基因。使用基因卡片数据库查找与外泌体相关的基因,并根据这些特征基因将样本分为高表达组和低表达组。利用功能和通路富集分析(GO、KEGG和GSEA)来研究特征基因潜在的生物学机制。通过使用机器学习算法(LASSO回归、支持向量机和随机森林)生成预测模型,以找到疾病特异性特征基因。采用受试者工作特征(ROC)曲线分析来评估模型的有效性。通过外部数据GSE83519验证,诊断模型显示出优异的预测准确性。该分析突出了22个具有显著差异表达的基因。通过使用机器学习算法,基于五个重要基因(、、、和)生成了一个预测模型。和显示出相对较高的预测性能。使用单样本基因集富集分析(ssGSEA)算法,鉴定出三个关键基因(、和)与免疫调节、免疫反应抑制以及HNSCC进展中涉及的关键信号通路密切相关。将HNSCC特征基因表达谱与DSigDB化合物特征进行匹配,发现了潜在的治疗靶点。分子对接模拟确定了具有高结合亲和力和稳定性的配体,特别是C5和Hoechst 33258,它们被优先用于进一步验证和潜在的药物开发。本研究采用了一种利用机器学习技术构建的新型HNSCC诊断模型,可为HNSCC的早期诊断提供支持,从而有助于改善患者的治疗方案和临床管理策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bc3/12024895/4b44be5214f9/biomedicines-13-00780-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验