Suppr超能文献

基于随机森林算法的鱼类农药水生毒性分类模型。

Random forest algorithm-based classification model of pesticide aquatic toxicity to fishes.

机构信息

Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Regeneration, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China.

Department of Neurosurgery, Central Hospital of Xiangtan, Xiangtan, Hunan 411100, China.

出版信息

Aquat Toxicol. 2022 Oct;251:106265. doi: 10.1016/j.aquatox.2022.106265. Epub 2022 Aug 14.

Abstract

Aquatic toxicity of pesticides can result in poisoning of many non-target organisms, of which various fishes are the most prominent one. It is a challenge to predict the toxicity (LC) classes of organic pesticides to various fish species from global QSAR models with a larger applicability domain. In this paper, by applying the random forest (RF) algorithm for a two-class problem, only eight molecular descriptors were used to develop a quantitative structure-activity relationship (QSAR) model for 1106 toxicity data (96 h, LC) of organic pesticides to various fish species including Oncorhynchus mykiss, Lepomis macrochirus, Pimephales promelas, Brachydanio rerio, Cyprinodon, Cyprinus carpio, etc. By the prediction of the optimal RF Model I (ntree =280, mtry = 3 and nodesize = 5), the training set (885 organic pesticides) has the prediction accuracies of 99.6% for Class 1 (LC ≤ 10) and 96.7% for Class 2 (LC > 10); the test set (221 organic pesticides) has the accuracies being 90.8% for Class 1 and 91.2% for Class 2. The optimal RF Model I is satisfactory compared with other QSAR model reported in the literature, although its descriptor subset is small.

摘要

农药的水生毒性会导致许多非目标生物中毒,其中各种鱼类最为突出。从具有更大适用域的全球定量构效关系(QSAR)模型预测有机农药对各种鱼类的毒性(LC)类别是一项挑战。在本文中,通过应用随机森林(RF)算法进行二类问题,仅使用了 8 个分子描述符,开发了一个定量结构-活性关系(QSAR)模型,用于 1106 种有机农药对各种鱼类(包括Oncorhynchus mykiss、Lepomis macrochirus、Pimephales promelas、Brachydanio rerio、Cyprinodon、Cyprinus carpio 等)的毒性数据(96 h,LC)。通过最优 RF 模型 I(ntree =280、mtry =3 和 nodesize =5)的预测,训练集(885 种有机农药)对 1 类(LC≤10)的预测准确率为 99.6%,对 2 类(LC>10)的预测准确率为 96.7%;测试集(221 种有机农药)对 1 类的准确率为 90.8%,对 2 类的准确率为 91.2%。与文献中报道的其他 QSAR 模型相比,最优 RF 模型 I 虽然描述符子集较小,但结果令人满意。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验