Suppr超能文献

基于肌肉协同和稀疏表面肌电图的GAT-LSTM框架连续关节运动学预测

Continuous Joint Kinematics Prediction Using GAT-LSTM Framework Based on Muscle Synergy and Sparse sEMG.

作者信息

Li Meiju, Wei Zijun, Zhang Zhi-Qiang, Ma Shuhao, Xie Sheng Quan

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2025;33:1763-1773. doi: 10.1109/TNSRE.2025.3565305. Epub 2025 May 8.

Abstract

sEMG signals hold significant potential for motion prediction, with promising applications in areas such as rehabilitation, sports training, and human-computer interaction. However, achieving robust prediction accuracy remains a critical challenge, as even minor inaccuracies in motion prediction can severely affect the reliability and practical utility of sEMG-based systems. In this study, we propose a novel framework, muscle synergy (MS)-based graph attention networks (MSGAT-LSTM), specifically designed to address the challenges of continuous motion prediction using sparse sEMG electrodes. By leveraging MS theory and graph-based learning, the framework effectively compensates for the limitations of sparse sEMG setups and achieves significant improvements in prediction accuracy compared to existing methods. Based on MS theory, the framework calculates cosine similarity between sEMG signal features from different muscles to assign edge weights, effectively capturing their coordinated contributions to motion. The proposed framework integrates GAT for relational feature learning with LSTM networks for temporal dependency modeling, leveraging the strengths of both architectures. Experimental results on the public dataset Ninapro DB2 and a self-collected dataset demonstrate that MSGAT-LSTM achieves superior performance compared to state-of-the-art methods, including the muscle anatomy and MS-based 3DCNN, GCN-LSTM, and classic models such as CNN-LSTM, CNN, and LSTM, in terms of RMSE and R2. Furthermore, experimental results reveal that incorporating MS into GCN reduces training time by 13% compared to GCN-LSTM, significantly enhancing computational efficiency and scalability. This study highlights the potential of integrating MS theory with graph-based deep learning methods for motion prediction based on sEMG.

摘要

表面肌电信号在运动预测方面具有巨大潜力,在康复、运动训练和人机交互等领域有着广阔的应用前景。然而,要实现稳健的预测精度仍然是一项关键挑战,因为即使是运动预测中的微小误差也可能严重影响基于表面肌电的系统的可靠性和实际效用。在本研究中,我们提出了一种新颖的框架,即基于肌肉协同(MS)的图注意力网络(MSGAT-LSTM),专门用于解决使用稀疏表面肌电电极进行连续运动预测的挑战。通过利用MS理论和基于图的学习,该框架有效地弥补了稀疏表面肌电设置的局限性,与现有方法相比,在预测精度上有显著提高。基于MS理论,该框架计算来自不同肌肉的表面肌电信号特征之间的余弦相似度以分配边权重,有效地捕捉它们对运动的协同贡献。所提出的框架将用于关系特征学习的图注意力网络(GAT)与用于时间依赖性建模的长短期记忆网络(LSTM)相结合,利用了两种架构的优势。在公共数据集Ninapro DB2和一个自行收集的数据集上的实验结果表明,在均方根误差(RMSE)和决定系数(R2)方面,MSGAT-LSTM与包括基于肌肉解剖和MS的三维卷积神经网络(3DCNN)、图卷积网络-长短期记忆网络(GCN-LSTM)以及诸如卷积神经网络-长短期记忆网络(CNN-LSTM)、卷积神经网络(CNN)和长短期记忆网络(LSTM)等经典模型在内的现有最先进方法相比,具有卓越的性能。此外,实验结果表明,与GCN-LSTM相比,将MS纳入图卷积网络可将训练时间减少13%,显著提高了计算效率和可扩展性。本研究突出了将MS理论与基于图的深度学习方法相结合用于基于表面肌电的运动预测的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验