Datta Kunal, Khadilkar Pranav, Zhang Honghu, LaFollette Diana K, Rojas-Gatjens Esteban, Li Ruipeng, Hu Guoxiang, Correa-Baena Juan-Pablo
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America.
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States of America.
J Am Chem Soc. 2025 May 14;147(19):16119-16128. doi: 10.1021/jacs.4c18641. Epub 2025 Apr 29.
Fast, uncontrolled crystallization with several competing pathways makes solution-processing of phase-pure quasi-two-dimensional (quasi-2D) metal halide Ruddlesden-Popper thin films challenging. Typically, solution-processing results in the formation of different structural phases with varying dimensionality ranging from 2D, to quasi-2D, and 3D, introducing bandgap disorder and inhibiting charge transport. In this work, we eliminate interactions between precursor salts and solvents by using controlled thermal coevaporation to grow quasi-2D thin films that show high phase purity and narrow phase distribution. We study the structural landscape using synchrotron-based X-ray scattering and charge-carrier dynamics using ultrafast pump-probe spectroscopy. We then demonstrate a strategy to control the crystallographic phase of the film through phosphonic acid-based surface modification. We use density functional theory to study the interactions between propylphosphonic acid and the organic precursors and find that the interactions of loosely bound phosphonic acid molecules with evaporated precursors, followed by the migration of phosphonic acids through the deposited thin film, dictate the film structure between 2D and quasi-2D phases. These findings introduce new solvent-free methods for the fabrication of phase-pure quasi-2D Ruddlesden-Popper thin films and control phase selectivity across different dimensional (2D and quasi-2D) structures.
快速、不受控制的结晶过程存在多种竞争途径,这使得相纯的准二维(准2D)金属卤化物Ruddlesden-Popper薄膜的溶液处理具有挑战性。通常,溶液处理会导致形成不同结构相,其维度从二维到准二维再到三维不等,从而引入带隙无序并抑制电荷传输。在这项工作中,我们通过使用可控热共蒸发来生长具有高相纯度和窄相分布的准二维薄膜,从而消除前驱体盐与溶剂之间的相互作用。我们使用基于同步加速器的X射线散射研究结构态势,并使用超快泵浦-探测光谱研究电荷载流子动力学。然后,我们展示了一种通过基于膦酸的表面改性来控制薄膜晶体相的策略。我们使用密度泛函理论研究丙基膦酸与有机前驱体之间的相互作用,发现松散结合的膦酸分子与蒸发的前驱体之间的相互作用,以及膦酸在沉积薄膜中的迁移,决定了薄膜在二维和准二维相之间的结构。这些发现为制备相纯的准二维Ruddlesden-Popper薄膜引入了新的无溶剂方法,并控制了不同维度(二维和准二维)结构之间的相选择性。