Kliner Vojta, Soto-Montero Tatiana, Nespoli Jasmeen, Savenije Tom J, Ledinský Martin, Morales-Masis Monica
MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands.
Institute of Physics, Czech Academy of Sciences, 162 00 Prague, Czech Republic.
J Phys Chem Lett. 2025 Feb 13;16(6):1453-1460. doi: 10.1021/acs.jpclett.5c00047. Epub 2025 Jan 31.
The potential of the vapor-phase deposition of metal halide perovskites (MHPs) for solar cells remains largely untapped, particularly in achieving rapid deposition rates. In this study, we employ in situ photoluminescence (PL) to monitor the growth dynamics of MHPs deposited via pulsed laser deposition (PLD), with rates ranging from 6 to 80 nm/min. Remarkably, the PL intensity evolution remains consistent across both low- and high-deposition rates, indicating that increased deposition rates do not significantly alter the fundamental mechanisms driving MHP formation via PLD. However, microstructural analysis and time-resolved microwave conductivity (TRMC) measurements reveal that increasing deposition rates lead to randomly oriented films on contact layers and reduced charge mobility compared with films grown at lower deposition rates. These findings emphasize the critical role of controlling initial nucleation and the value of in situ PL monitoring in optimizing the vapor-phase deposition of MHPs for enhanced photovoltaic performance at high deposition rates.
金属卤化物钙钛矿(MHP)用于太阳能电池的气相沉积潜力在很大程度上尚未得到开发,尤其是在实现快速沉积速率方面。在本研究中,我们采用原位光致发光(PL)来监测通过脉冲激光沉积(PLD)沉积的MHP的生长动力学,沉积速率范围为6至80纳米/分钟。值得注意的是,在低沉积速率和高沉积速率下,PL强度演变保持一致,这表明沉积速率的增加不会显著改变通过PLD驱动MHP形成的基本机制。然而,微观结构分析和时间分辨微波电导率(TRMC)测量表明,与以较低沉积速率生长的薄膜相比,沉积速率的增加会导致接触层上的薄膜取向随机且电荷迁移率降低。这些发现强调了控制初始成核的关键作用以及原位PL监测在优化MHP气相沉积以在高沉积速率下提高光伏性能方面的价值。