Suppr超能文献

基于循环肿瘤 DNA 的纵向模型与转移性非小细胞肺癌的生存相关。

A longitudinal circulating tumor DNA-based model associated with survival in metastatic non-small-cell lung cancer.

机构信息

Genentech Inc., South San Francisco, CA, USA.

Foundation Medicine Inc., Cambridge, MA, USA.

出版信息

Nat Med. 2023 Apr;29(4):859-868. doi: 10.1038/s41591-023-02226-6. Epub 2023 Mar 16.

Abstract

One of the great challenges in therapeutic oncology is determining who might achieve survival benefits from a particular therapy. Studies on longitudinal circulating tumor DNA (ctDNA) dynamics for the prediction of survival have generally been small or nonrandomized. We assessed ctDNA across 5 time points in 466 non-small-cell lung cancer (NSCLC) patients from the randomized phase 3 IMpower150 study comparing chemotherapy-immune checkpoint inhibitor (chemo-ICI) combinations and used machine learning to jointly model multiple ctDNA metrics to predict overall survival (OS). ctDNA assessments through cycle 3 day 1 of treatment enabled risk stratification of patients with stable disease (hazard ratio (HR) = 3.2 (2.0-5.3), P < 0.001; median 7.1 versus 22.3 months for high- versus low-intermediate risk) and with partial response (HR = 3.3 (1.7-6.4), P < 0.001; median 8.8 versus 28.6 months). The model also identified high-risk patients in an external validation cohort from the randomized phase 3 OAK study of ICI versus chemo in NSCLC (OS HR = 3.73 (1.83-7.60), P = 0.00012). Simulations of clinical trial scenarios employing our ctDNA model suggested that early ctDNA testing outperforms early radiographic imaging for predicting trial outcomes. Overall, measuring ctDNA dynamics during treatment can improve patient risk stratification and may allow early differentiation between competing therapies during clinical trials.

摘要

在肿瘤治疗学中,一个巨大的挑战是确定哪些患者可能从特定的治疗中获益。关于通过纵向循环肿瘤 DNA(ctDNA)动态变化来预测生存的研究通常规模较小或未进行随机分组。我们评估了来自随机 3 期 IMpower150 研究的 466 名非小细胞肺癌(NSCLC)患者的 5 个时间点的 ctDNA,该研究比较了化疗免疫检查点抑制剂(chemo-ICI)联合治疗,并使用机器学习对多个 ctDNA 指标进行联合建模,以预测总生存期(OS)。通过治疗第 3 周期第 1 天的 ctDNA 评估,可以对疾病稳定的患者进行风险分层(风险比(HR)=3.2(2.0-5.3),P<0.001;高风险与低-中风险患者的中位 OS 分别为 7.1 个月和 22.3 个月)和部分缓解的患者(HR=3.3(1.7-6.4),P<0.001;中位 OS 分别为 8.8 个月和 28.6 个月)。该模型还在 NSCLC 中 ICI 对比化疗的随机 3 期 OAK 研究的外部验证队列中确定了高风险患者(OS HR=3.73(1.83-7.60),P=0.00012)。使用我们的 ctDNA 模型进行临床试验场景的模拟表明,早期 ctDNA 检测比早期影像学检查更能预测临床试验结果。总体而言,在治疗期间测量 ctDNA 动态变化可以改善患者的风险分层,并且可能允许在临床试验期间早期区分竞争治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb92/10115641/667efd8953d3/41591_2023_2226_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验