Suppr超能文献

一种基于机器学习的结直肠癌诊断实用方法。

A practical approach for colorectal cancer diagnosis based on machine learning.

作者信息

Hai Minh Nguyen, Quy Tran Quang, Tam Ngo Duc, Tuan Tran Manh, Son Le Hoang

机构信息

Thai Nguyen University, Information and Communication Technology, Thai Nguyen, Vietnam.

Artificial Intelligence Research Center, VNU Information Technology Institute, Vietnam National University, Hanoi, Vietnam.

出版信息

PLoS One. 2025 Apr 29;20(4):e0321009. doi: 10.1371/journal.pone.0321009. eCollection 2025.

Abstract

In this paper, we present the results of applying machine learning models to build a Colorectal Cancer Diagnosis system. The methodology encompasses six key steps: collecting raw data from Electronic Medical Records (EMRs), revising feature attributes with expert input, data preprocessing, model adaptation, training machine learning models (CART, Random Forest, and XGBOOST), and evaluating the results. Furthermore, based on analysis of experimental measurement parameter values, 21 feature attributes which relate to support early diagnose the Colorectal cancer disease are extracted. Among different models implemented in our case, XGBOOST is the most suitable model to solve this problem. The system assists clinicians to select clinical tests and medical procedures for a colorectal cancer patient. Therefore, patients can save the waiting time and medical examination costs. On the other hand, based on the achievements from this research, our approach can guide further applying machine learning in medicine.

摘要

在本文中,我们展示了应用机器学习模型构建结直肠癌诊断系统的结果。该方法包括六个关键步骤:从电子病历(EMR)中收集原始数据、通过专家输入修正特征属性、数据预处理、模型适配、训练机器学习模型(CART、随机森林和XGBOOST)以及评估结果。此外,基于对实验测量参数值的分析,提取了21个与支持早期诊断结直肠癌疾病相关的特征属性。在我们案例中实现的不同模型中,XGBOOST是解决此问题的最合适模型。该系统协助临床医生为结直肠癌患者选择临床检查和医疗程序。因此,患者可以节省等待时间和医疗检查费用。另一方面,基于本研究的成果,我们的方法可以指导机器学习在医学领域的进一步应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb67/12040227/3377c404ebd1/pone.0321009.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验