Zhu Tao, Jiang Weiwei, Wu Yingyu, Fang Rong, Deng Fei, Yang Danting
Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315000, China.
Ningbo Clinical and Pathological Diagnosis Center, Ningbo, 315000, China.
Talanta. 2025 Nov 1;294:128223. doi: 10.1016/j.talanta.2025.128223. Epub 2025 Apr 25.
Non-coding RNAs play crucial roles in disease initiation and progression, making them promising biomarkers for early diagnosis and treatment monitoring. Conventional nucleic acid diagnostic methods, including polymerase chain reaction (PCR), next-generation sequencing (NGS), and enzyme-linked immunosorbent assay (ELISA), alongside emerging techniques such as single-molecule fluorescence in situ hybridization (smFISH), nanopore sequencing, and single-cell RNA sequencing (scRNA-seq), face inherent limitations in detecting regulatory non-coding RNAs. These challenges include laborious workflows, prolonged processing times, and technical complexities, hindering their broad applicability in rapid and high-throughput RNA analysis. CRISPR/Cas13a-based biosensors, integrated with various signal transduction systems-such as fluorescence, electrochemistry, colorimetry, surface-enhanced Raman spectroscopy (SERS)-show great promise for real-world diagnostic applications. This review provides a comprehensive overview of the CRISPR/Cas13a-mediated RNA detection mechanism, the development of CRISPR/Cas13a-based biosensors, and their integration with innovative signal detection methods. Additionally, we highlight the progress in portable detection devices, including lateral flow assay strips and smartphone-based platforms. Finally, the review discusses the current challenges and future prospects of CRISPR/Cas13a-based biosensors, particularly in the context of clinical diagnostics and personalized medicine.
非编码RNA在疾病的发生和发展中起着关键作用,使其成为早期诊断和治疗监测中有前景的生物标志物。传统的核酸诊断方法,包括聚合酶链反应(PCR)、下一代测序(NGS)和酶联免疫吸附测定(ELISA),以及诸如单分子荧光原位杂交(smFISH)、纳米孔测序和单细胞RNA测序(scRNA-seq)等新兴技术,在检测调控性非编码RNA方面面临着固有的局限性。这些挑战包括繁琐的工作流程、较长的处理时间和技术复杂性,阻碍了它们在快速和高通量RNA分析中的广泛应用。基于CRISPR/Cas13a的生物传感器,与各种信号转导系统(如荧光、电化学、比色法、表面增强拉曼光谱(SERS))相结合,在实际诊断应用中显示出巨大的前景。本文综述全面概述了CRISPR/Cas13a介导的RNA检测机制、基于CRISPR/Cas13a的生物传感器的发展及其与创新信号检测方法的整合。此外,我们强调了便携式检测设备的进展,包括侧向流动分析试纸条和基于智能手机的平台。最后,本文讨论了基于CRISPR/Cas13a的生物传感器目前面临的挑战和未来前景,特别是在临床诊断和个性化医疗背景下。