Suppr超能文献

表型可塑性和扩散可塑性并非生物体应对温度变化的替代策略。

Phenotypic and dispersal plasticity are not alternative strategies for organisms to face thermal changes.

作者信息

Thierry Mélanie, Dupont Léonard, Legrand Delphine, Jacob Staffan

机构信息

Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 CNRS-IRD-TINP-UT3, CNRS, Toulouse, France.

Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France.

出版信息

Proc Biol Sci. 2025 Apr;292(2045):20242796. doi: 10.1098/rspb.2024.2796. Epub 2025 Apr 30.

Abstract

To buffer the effects of local environmental changes, organisms may modify their phenotypic traits (i.e. phenotypic plasticity) or disperse towards other potential habitats (i.e. dispersal plasticity). Despite extensive work studying either 'local phenotypic plasticity' or 'dispersal plasticity' independently, little is known about their potential covariation and interplay. These strategies are classically viewed as alternatives. However, this expectation has been challenged by theoretical work suggesting that they may instead evolve together under some environmental contexts. Here, we experimentally quantified morphological, movement and dispersal plasticity in response to thermal changes in 12 strains of the ciliate . We showed that phenotypic and dispersal plasticity are not alternative strategies, with half of the strains expressing simultaneously all dimensions of plasticity in response to thermal changes. Furthermore, the extent of morphological and movement plasticity weakly but significantly differed between residents and dispersers. Interestingly, we found no covariation between these different plasticity dimensions, suggesting that they may evolve independently, which pleads for studying which environmental contexts favour the evolution of each. The fact that phenotypic and dispersal plasticity are not alternative strategies and may affect the expression of one another opens interesting perspectives about their joint evolution and the potential consequences of their interplay.

摘要

为了缓冲局部环境变化的影响,生物体可能会改变其表型特征(即表型可塑性)或向其他潜在栖息地扩散(即扩散可塑性)。尽管有大量研究分别独立探讨“局代表型可塑性”或“扩散可塑性”,但对于它们潜在的协变和相互作用却知之甚少。这些策略传统上被视为相互替代的。然而,这一预期受到了理论研究的挑战,该研究表明在某些环境背景下它们可能会共同进化。在这里,我们通过实验量化了12种纤毛虫菌株对温度变化的形态、运动和扩散可塑性。我们发现表型可塑性和扩散可塑性并非相互替代的策略,一半的菌株在温度变化时同时表现出所有维度的可塑性。此外,形态和运动可塑性的程度在定居者和扩散者之间虽有微弱但显著的差异。有趣的是,我们发现这些不同可塑性维度之间没有协变,这表明它们可能独立进化,这为研究何种环境背景有利于各自的进化提供了依据。表型可塑性和扩散可塑性并非相互替代的策略且可能相互影响这一事实,为它们的共同进化以及相互作用的潜在后果开启了有趣的研究视角。

相似文献

1
Phenotypic and dispersal plasticity are not alternative strategies for organisms to face thermal changes.
Proc Biol Sci. 2025 Apr;292(2045):20242796. doi: 10.1098/rspb.2024.2796. Epub 2025 Apr 30.
2
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
3
Interventions for preventing and reducing the use of physical restraints for older people in all long-term care settings.
Cochrane Database Syst Rev. 2023 Jul 28;7(7):CD007546. doi: 10.1002/14651858.CD007546.pub3.
4
Measures implemented in the school setting to contain the COVID-19 pandemic.
Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029.
5
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
8
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
10
Personally tailored activities for improving psychosocial outcomes for people with dementia in long-term care.
Cochrane Database Syst Rev. 2023 Mar 13;3(3):CD009812. doi: 10.1002/14651858.CD009812.pub3.

本文引用的文献

1
Performance-based habitat choice can drive rapid adaptive divergence and reproductive isolation.
Curr Biol. 2024 Dec 2;34(23):5564-5569.e4. doi: 10.1016/j.cub.2024.10.006. Epub 2024 Oct 28.
2
Background selection for camouflage shifts in accordance with color change in an intertidal prawn.
Behav Ecol. 2024 Jul 27;35(5):arae060. doi: 10.1093/beheco/arae060. eCollection 2024 Sep-Oct.
3
The interplay between abiotic and biotic factors in dispersal decisions in metacommunities.
Philos Trans R Soc Lond B Biol Sci. 2024 Jul 29;379(1907):20230137. doi: 10.1098/rstb.2023.0137. Epub 2024 Jun 24.
4
Phenotypic plasticity and the effects of thermal fluctuations on specialists and generalists.
Proc Biol Sci. 2024 Jun;291(2025):20240256. doi: 10.1098/rspb.2024.0256. Epub 2024 Jun 19.
5
The macronuclear genomic landscape within .
Microb Genom. 2024 Jan;10(1). doi: 10.1099/mgen.0.001175.
6
Beyond reaction norms: the temporal dynamics of phenotypic plasticity.
Trends Ecol Evol. 2024 Jan;39(1):41-51. doi: 10.1016/j.tree.2023.08.014. Epub 2023 Sep 15.
7
Resident-Disperser Differences and Genetic Variability Affect Communities in Microcosms.
Am Nat. 2023 Mar;201(3):363-375. doi: 10.1086/722750. Epub 2023 Jan 31.
8
Dispersal syndromes in challenging environments: A cross-species experiment.
Ecol Lett. 2022 Dec;25(12):2675-2687. doi: 10.1111/ele.14124. Epub 2022 Oct 12.
9
Dispersal plasticity driven by variation in fitness across species and environmental gradients.
Ecol Lett. 2022 Nov;25(11):2410-2421. doi: 10.1111/ele.14101. Epub 2022 Oct 5.
10
Phenotypic plasticity promotes species coexistence.
Nat Ecol Evol. 2022 Sep;6(9):1256-1261. doi: 10.1038/s41559-022-01826-8. Epub 2022 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验