Suppr超能文献

应用机器学习方法的预测肥厚型心肌病的个性化 mRNA 特征。

A personalized mRNA signature for predicting hypertrophic cardiomyopathy applying machine learning methods.

机构信息

Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, 226000, Jiangsu Province, China.

Nantong Second People's Hospital, Nantong, China.

出版信息

Sci Rep. 2024 Jul 24;14(1):17023. doi: 10.1038/s41598-024-67201-8.

Abstract

Hypertrophic cardiomyopathy (HCM) may lead to cardiac dysfunction and sudden death. This study was designed to develop a HCM signature applying bioinformatics and machine learning methods. Data of HCM and normal tissues were obtained from public databases to screen differentially expressed genes (DEGs) using the R software limma package. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed for enrichment analysis of HCM-associated DEGs. Hub genes for HCM were determined using weighted gene co-expression network analysis (WGCNA) together with two machine learning algorithms (SVM-RFE and LASSO). Finally, we introduced a zebrafish model to simulate changes in the hub genes in the HCM and to observe their effects on cardiac disease development. The mRNA expression data from a total of 106 HCM tissues and 39 normal samples were collected and we screened 157 DEGs. Enrichment analysis showed that immune pathways played an important role in the pathogenesis of HCM. Three hub genes (FCN3, MYH6 and RASD1) were identified using WGCNA, SVM-RFE, and LASSO analysis. In a zebrafish model, knockdown of MYH6 and RASD1 resulted in cardiac malformations with reduced ventricular capacity and heart rate, which validated the clinical significance of these genes in the diagnosis of HCM. Based on machine learning algorithms, our study created a signature with potential impact on cardiac function and cardiac quality index for HCM. The current findings had important implications for the early diagnosis and treatment of HCM.

摘要

肥厚型心肌病(HCM)可能导致心脏功能障碍和猝死。本研究旨在应用生物信息学和机器学习方法开发 HCM 特征。从公共数据库中获取 HCM 和正常组织的数据,使用 R 软件 limma 包筛选差异表达基因(DEGs)。使用基因本体论(GO)和京都基因与基因组百科全书(KEGG)对 HCM 相关 DEGs 进行富集分析。使用加权基因共表达网络分析(WGCNA)和两种机器学习算法(SVM-RFE 和 LASSO)共同确定 HCM 的枢纽基因。最后,我们引入了斑马鱼模型来模拟 HCM 中枢纽基因的变化,并观察它们对心脏疾病发展的影响。共收集了 106 份 HCM 组织和 39 份正常样本的 mRNA 表达数据,筛选出 157 个 DEGs。富集分析表明,免疫途径在 HCM 的发病机制中起重要作用。使用 WGCNA、SVM-RFE 和 LASSO 分析鉴定了三个枢纽基因(FCN3、MYH6 和 RASD1)。在斑马鱼模型中,MYH6 和 RASD1 的敲低导致心室容量和心率降低的心脏畸形,验证了这些基因在 HCM 诊断中的临床意义。基于机器学习算法,我们的研究创建了一个对 HCM 心脏功能和心脏质量指数有潜在影响的特征。这一发现对 HCM 的早期诊断和治疗具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/11266364/73e4b7fe3d4f/41598_2024_67201_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验