Suppr超能文献

培养神经元网络中自发性活动的早期预测。

Early prediction of developing spontaneous activity in cultured neuronal networks.

机构信息

Department of Biochemistry and Molecular Biology and University Institute of Biotechnology of Asturias (IUBA), Campus "El Cristo", University of Oviedo, 33006, Oviedo, Spain.

Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands.

出版信息

Sci Rep. 2021 Oct 14;11(1):20407. doi: 10.1038/s41598-021-99538-9.

Abstract

Synchronization and bursting activity are intrinsic electrophysiological properties of in vivo and in vitro neural networks. During early development, cortical cultures exhibit a wide repertoire of synchronous bursting dynamics whose characterization may help to understand the parameters governing the transition from immature to mature networks. Here we used machine learning techniques to characterize and predict the developing spontaneous activity in mouse cortical neurons on microelectrode arrays (MEAs) during the first three weeks in vitro. Network activity at three stages of early development was defined by 18 electrophysiological features of spikes, bursts, synchrony, and connectivity. The variability of neuronal network activity during early development was investigated by applying k-means and self-organizing map (SOM) clustering analysis to features of bursts and synchrony. These electrophysiological features were predicted at the third week in vitro with high accuracy from those at earlier times using three machine learning models: Multivariate Adaptive Regression Splines, Support Vector Machines, and Random Forest. Our results indicate that initial patterns of electrical activity during the first week in vitro may already predetermine the final development of the neuronal network activity. The methodological approach used here may be applied to explore the biological mechanisms underlying the complex dynamics of spontaneous activity in developing neuronal cultures.

摘要

同步和爆发活动是体内和体外神经网络的固有电生理特性。在早期发育过程中,皮质培养物表现出广泛的同步爆发动力学,其特征描述可能有助于理解控制从不成熟到成熟网络转变的参数。在这里,我们使用机器学习技术来描述和预测体外培养的小鼠皮质神经元在头三个星期内的自发活动。网络活动在早期发育的三个阶段由尖峰、爆发、同步和连接的 18 个电生理特征定义。通过应用 k-均值和自组织映射 (SOM) 聚类分析来研究爆发和同步的特征,研究了早期发育过程中神经元网络活动的可变性。使用三种机器学习模型(多变量自适应回归样条、支持向量机和随机森林),从更早的时间点准确地预测了第三周在体外的这些电生理特征。我们的结果表明,在体外第一周的初始电活动模式可能已经预先确定了神经元网络活动的最终发展。这里使用的方法学方法可以应用于探索发育中神经元培养物中自发活动复杂动力学的生物学机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/405d/8516856/37134154f383/41598_2021_99538_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验