Qiao Chang, Li Ziwei, Wang Zongfa, Lin Yuhuan, Liu Chong, Zhang Siwei, Liu Yong, Feng Yun, Yang Xiaoyu, Fu Wenfeng, Dong Xue, Guo Jiabao, Xu Wencong, Wang Xinyu, Jiang Tao, Meng Quan, Wang Qinghua, Dai Qionghai, Li Dong
Department of Automation, Tsinghua University, Beijing, China.
Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
Nat Methods. 2025 May;22(5):1059-1069. doi: 10.1038/s41592-025-02678-3. Epub 2025 Apr 29.
Lattice light-sheet microscopy provides a crucial observation window into intra- and intercellular physiology of living specimens but at the diffraction-limited resolution or anisotropic super-resolution with structured illumination. Here we present meta-learning-empowered reflective lattice light-sheet virtual structured illumination microscopy (Meta-rLLS-VSIM), which upgrades lattice light-sheet microscopy to a near-isotropic super resolution of ~120 nm laterally and ~160 nm axially without modifications of the core optical system or loss of other live-cell imaging metrics. Moreover, we devised an adaptive online training approach by synergizing the front-end imaging system and back-end meta-learning framework, which alleviated the demand for training data by tenfold and reduced the total time for data acquisition and model training down to tens of seconds. We demonstrate the versatile functionalities of Meta-rLLS-VSIM by imaging a variety of bioprocesses with ultrahigh spatiotemporal resolution for hundreds of multicolor volumes, delineating the nanoscale distributions, dynamics and interaction patterns of multiple organelles in embryos and eukaryotic cells.
晶格光片显微镜为观察活体标本的细胞内和细胞间生理学提供了一个关键的观察窗口,但它的分辨率受限于衍射极限,或者通过结构光照实现各向异性超分辨率。在此,我们展示了元学习赋能的反射式晶格光片虚拟结构照明显微镜(Meta-rLLS-VSIM),它将晶格光片显微镜升级为横向约120纳米、轴向约160纳米的近各向同性超分辨率,且无需对核心光学系统进行修改,也不会损失其他活细胞成像指标。此外,我们通过将前端成像系统和后端元学习框架协同,设计了一种自适应在线训练方法,该方法将训练数据需求减少了十倍,并将数据采集和模型训练的总时间缩短至数十秒。我们通过以超高时空分辨率对数百个多色体积的各种生物过程进行成像,展示了Meta-rLLS-VSIM的多功能性,描绘了胚胎和真核细胞中多个细胞器的纳米级分布、动态和相互作用模式。