Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
Nat Methods. 2024 Feb;21(2):301-310. doi: 10.1038/s41592-023-02126-0. Epub 2024 Jan 2.
Light-sheet microscopes enable rapid high-resolution imaging of biological specimens; however, biological processes span spatiotemporal scales. Moreover, long-term phenotypes are often instigated by rare or fleeting biological events that are difficult to capture with a single imaging modality. Here, to overcome this limitation, we present smartLLSM, a microscope that incorporates artificial intelligence-based instrument control to autonomously switch between epifluorescent inverted imaging and lattice light-sheet microscopy (LLSM). We apply this approach to two unique processes: cell division and immune synapse formation. In each context, smartLLSM provides population-level statistics across thousands of cells and autonomously captures multicolor three-dimensional datasets or four-dimensional time-lapse movies of rare events at rates that dramatically exceed human capabilities. From this, we quantify the effects of Taxol dose on spindle structure and kinetochore dynamics in dividing cells and of antigen strength on cytotoxic T lymphocyte engagement and lytic granule polarization at the immune synapse. Overall, smartLLSM efficiently detects rare events within heterogeneous cell populations and records these processes with high spatiotemporal four-dimensional imaging over statistically significant replicates.
光片显微镜能够快速高分辨率地对生物样本进行成像;然而,生物过程跨越时空尺度。此外,长期表型通常是由罕见或短暂的生物事件引发的,这些事件很难用单一的成像模式来捕捉。在这里,为了克服这一限制,我们提出了 smartLLSM,这是一种将基于人工智能的仪器控制集成到一起的显微镜,可以自动在荧光倒置成像和晶格光片显微镜(LLSM)之间切换。我们将这种方法应用于两个独特的过程:细胞分裂和免疫突触形成。在每种情况下,smartLLSM 都能提供数千个细胞的群体水平统计数据,并能以远超人的能力的速度自动捕获罕见事件的多色三维数据集或四维度时移电影。由此,我们量化了紫杉醇剂量对分裂细胞中纺锤体结构和着丝粒动力学的影响,以及抗原强度对细胞毒性 T 淋巴细胞结合和免疫突触中溶酶体极化的影响。总的来说,smartLLSM 能够在异质细胞群体中高效地检测罕见事件,并以高时空四维成像记录这些过程,具有统计学意义的重复。