Suppr超能文献

重症监护病房生命体征轨迹的同步预测。

Simultaneous forecasting of vital sign trajectories in the ICU.

作者信息

He Rosemary, Chiang Jeffrey N

机构信息

Department of Computer Science, University of California Los Angeles, Los Angeles, CA, 90095, USA.

Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.

出版信息

Sci Rep. 2025 Apr 29;15(1):14996. doi: 10.1038/s41598-025-99719-w.

Abstract

Individual health trajectory forecasting is a major opportunity for computational methods to integrate with precision healthcare. Recently developed generative AI models have demonstrated promising results in capturing short and long range dependencies in time series data. While these models have also been applied in healthcare, most state-of-the-art are local models, i.e. one model per feature, which is unrealistic in a clinical setting where multiple measures are taken at once. In this work, we extend the framework temporal fusion transformer (TFT), a multi-horizon time series prediction tool, and propose TFT-multi, a global model that can predict multiple vital trajectories simultaneously. We apply TFT-multi to forecast 5 vital signs recorded in the intensive care unit: blood pressure, pulse, SpO2, temperature and respiratory rate. We hypothesize that by jointly predicting these measures, which are often correlated with one another, we can make more accurate predictions, especially in variables with large missingness. We validate our model on the public MIMIC dataset and an independent institutional dataset, and demonstrate our model's competitive performance and computational efficiency compared to state-of-the-art prediction tools. Furthermore, we perform a study case analysis by applying our pipeline to forecast blood pressure changes in response to actual and hypothetical pressor administration.

摘要

个体健康轨迹预测是计算方法与精准医疗相结合的一个重大机遇。最近开发的生成式人工智能模型在捕捉时间序列数据中的短期和长期依赖关系方面已显示出有前景的结果。虽然这些模型也已应用于医疗保健领域,但大多数最先进的都是局部模型,即每个特征一个模型,这在同时进行多项测量的临床环境中是不现实的。在这项工作中,我们扩展了时间融合变压器(TFT)框架,这是一种多步时间序列预测工具,并提出了TFT-multi,这是一种可以同时预测多个生命体征轨迹的全局模型。我们应用TFT-multi来预测重症监护病房记录的5种生命体征:血压、脉搏、血氧饱和度、体温和呼吸频率。我们假设,通过联合预测这些通常相互关联的指标,我们可以做出更准确的预测,尤其是在缺失值较大的变量中。我们在公开的MIMIC数据集和一个独立的机构数据集上验证了我们的模型,并展示了我们的模型与最先进的预测工具相比的竞争性能和计算效率。此外,我们通过应用我们的管道来预测实际和假设的升压药给药后的血压变化,进行了一个案例分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71f3/12041510/c255dae8cbad/41598_2025_99719_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验