Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
Biomedical Informatics, University Hospital of Zurich, Zurich, Switzerland.
J Med Internet Res. 2021 Dec 3;23(12):e29812. doi: 10.2196/29812.
In digital medicine, patient data typically record health events over time (eg, through electronic health records, wearables, or other sensing technologies) and thus form unique patient trajectories. Patient trajectories are highly predictive of the future course of diseases and therefore facilitate effective care. However, digital medicine often uses only limited patient data, consisting of health events from only a single or small number of time points while ignoring additional information encoded in patient trajectories. To analyze such rich longitudinal data, new artificial intelligence (AI) solutions are needed. In this paper, we provide an overview of the recent efforts to develop trajectory-aware AI solutions and provide suggestions for future directions. Specifically, we examine the implications for developing disease models from patient trajectories along the typical workflow in AI: problem definition, data processing, modeling, evaluation, and interpretation. We conclude with a discussion of how such AI solutions will allow the field to build robust models for personalized risk scoring, subtyping, and disease pathway discovery.
在数字医学中,患者数据通常记录随时间推移的健康事件(例如,通过电子健康记录、可穿戴设备或其他感测技术),从而形成独特的患者轨迹。患者轨迹对疾病的未来进程具有高度预测性,因此有助于提供有效的护理。然而,数字医学通常仅使用有限的患者数据,这些数据仅包含单个或少数时间点的健康事件,而忽略了患者轨迹中编码的其他信息。为了分析这种丰富的纵向数据,需要开发新的人工智能(AI)解决方案。在本文中,我们概述了最近开发轨迹感知 AI 解决方案的努力,并为未来的方向提供了建议。具体来说,我们根据 AI 中的典型工作流程,研究了从患者轨迹中开发疾病模型的意义:问题定义、数据处理、建模、评估和解释。最后,我们讨论了这种 AI 解决方案如何使该领域能够为个性化风险评分、亚型划分和疾病途径发现构建强大的模型。