Sun Jie, Chen Cao, Zhang Bo, Yao Chen, Zhang Yafeng
Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
Biomed Eng Online. 2025 Apr 30;24(1):51. doi: 10.1186/s12938-025-01381-w.
The treatment of large bone defects remains a significant clinical challenge due to the limitations of current grafting techniques, including donor site morbidity, restricted availability, and suboptimal integration. Recent advances in 3D bioprinting technology have enabled the fabrication of structurally and functionally optimized scaffolds that closely mimic native bone tissue architecture. This review comprehensively examines the latest developments in 3D-printed scaffolds for bone regeneration, focusing on three critical aspects: (1) material selection and composite design encompassing metallic; (2) structural optimization with hierarchical porosity (macro/micro/nano-scale) and biomechanical properties tailored; (3) biological functionalization through growth factor delivery, cell seeding strategies and surface modifications. We critically analyze scaffold performance metrics from different research applications, while discussing current translational barriers, including vascular network establishment, mechanical stability under load-bearing conditions, and manufacturing scalability. The review concludes with a forward-looking perspective on innovative approaches such as 4D dynamic scaffolds, smart biomaterials with stimuli-responsive properties, and the integration of artificial intelligence for patient-specific design optimization. These technological advancements collectively offer unprecedented opportunities to address unmet clinical needs in complex bone reconstruction.
由于当前骨移植技术存在局限性,包括供体部位并发症、供应受限和整合效果欠佳,大骨缺损的治疗仍然是一项重大的临床挑战。3D生物打印技术的最新进展使得能够制造出结构和功能优化的支架,这些支架能紧密模仿天然骨组织结构。本综述全面审视了用于骨再生的3D打印支架的最新进展,重点关注三个关键方面:(1)包括金属材料在内的材料选择和复合材料设计;(2)具有分级孔隙率(宏观/微观/纳米尺度)的结构优化以及定制的生物力学性能;(3)通过生长因子递送、细胞接种策略和表面修饰实现生物功能化。我们批判性地分析了不同研究应用中的支架性能指标,同时讨论了当前的转化障碍,包括血管网络建立、承重条件下的机械稳定性以及制造可扩展性。综述最后对创新方法进行了前瞻性展望,如4D动态支架、具有刺激响应特性的智能生物材料以及整合人工智能以实现针对患者的设计优化。这些技术进步共同为解决复杂骨重建中未满足的临床需求提供了前所未有的机会。