文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

解锁反应性和无反应性特征:一种用于皮肤利什曼病病变自动分类的迁移学习方法。

Unlocking Responsive and Unresponsive Signatures: A Transfer Learning Approach for Automated Classification in Cutaneous Leishmaniasis Lesions.

作者信息

Bamorovat Mehdi, Sharifi Iraj, Tahmouresi Amirhossein, Agha Kuchak Afshari Setareh, Rashedi Esmat

机构信息

Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.

Machine Learning and Modelling Expert, Kerman University of Medical Science, Kerman, Iran.

出版信息

Transbound Emerg Dis. 2025 Jan 21;2025:5018632. doi: 10.1155/tbed/5018632. eCollection 2025.


DOI:10.1155/tbed/5018632
PMID:40302757
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12016710/
Abstract

Cutaneous leishmaniasis (CL) remains a significant global public health disease, with the critical distinction and exact detection between responsive and unresponsive cases dictating treatment strategies and patient outcomes. However, image-based methods for differentiating these groups are unexplored. This study addresses this gap by developing a deep learning (DL) model utilizing transfer learning to automatically identify responses in CL lesions. A dataset of 102 lesion images (51 per class; equally distributed across train, test, and validation sets) is employed. The DenseNet161, VGG16, and ResNet18 networks, pretrained on a massive image dataset, are fine-tuned for our specific task. The models achieved an accuracy of 76.47%, 73.53%, and 55.88% on the test data, respectively, with a sensitivity of 80%, 75%, and 100% and specificity of 73.68%, 72.22%, and 53.12%, individually. Transfer learning successfully addressed the limited sample size challenge, demonstrating the models' potential for real-world application. This work underscores the significance of automated response detection in CL, paving the way for treatment and improved patient outcomes. While acknowledging limitations like the sample size, the need for collaborative efforts is emphasized to expand datasets and further refine the model. This approach stands as a beacon of hope in the contest against CL, illuminating the path toward a future where data-driven diagnostics guide effective treatment and alleviate the suffering of countless patients. Moreover, the study could be a turning point in eliminating this important global public health and widespread disease.

摘要

皮肤利什曼病(CL)仍然是一种严重的全球公共卫生疾病,区分反应性和无反应性病例并进行准确检测对于确定治疗策略和患者预后至关重要。然而,尚未探索基于图像的方法来区分这些组别。本研究通过开发一种利用迁移学习的深度学习(DL)模型来自动识别CL病变的反应,填补了这一空白。使用了一个包含102张病变图像的数据集(每个类别51张;在训练集、测试集和验证集中平均分布)。在大规模图像数据集上预训练的DenseNet161、VGG16和ResNet18网络针对我们的特定任务进行了微调。这些模型在测试数据上的准确率分别为76.47%、73.53%和55.88%,灵敏度分别为80%、75%和100%,特异性分别为73.68%、72.22%和53.12%。迁移学习成功解决了样本量有限的挑战,证明了这些模型在实际应用中的潜力。这项工作强调了CL中自动反应检测的重要性,为治疗和改善患者预后铺平了道路。虽然认识到样本量等局限性,但强调需要共同努力来扩大数据集并进一步优化模型。在对抗CL的斗争中,这种方法是希望的灯塔,照亮了通往未来的道路,在未来,数据驱动的诊断将指导有效的治疗并减轻无数患者的痛苦。此外,该研究可能是消除这种重要的全球公共卫生和广泛传播疾病的一个转折点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d9/12016710/2f7fd8d3b843/TBED2025-5018632.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d9/12016710/2d424610f6ee/TBED2025-5018632.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d9/12016710/67ea1feac2ea/TBED2025-5018632.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d9/12016710/d3a0d79eb0ae/TBED2025-5018632.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d9/12016710/be3dc6017f85/TBED2025-5018632.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d9/12016710/8c606376eeb0/TBED2025-5018632.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d9/12016710/2f7fd8d3b843/TBED2025-5018632.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d9/12016710/2d424610f6ee/TBED2025-5018632.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d9/12016710/67ea1feac2ea/TBED2025-5018632.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d9/12016710/d3a0d79eb0ae/TBED2025-5018632.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d9/12016710/be3dc6017f85/TBED2025-5018632.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d9/12016710/8c606376eeb0/TBED2025-5018632.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d9/12016710/2f7fd8d3b843/TBED2025-5018632.006.jpg

相似文献

[1]
Unlocking Responsive and Unresponsive Signatures: A Transfer Learning Approach for Automated Classification in Cutaneous Leishmaniasis Lesions.

Transbound Emerg Dis. 2025-1-21

[2]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[3]
A novel diagnostic and prognostic approach for unresponsive patients with anthroponotic cutaneous leishmaniasis using artificial neural networks.

PLoS One. 2021

[4]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[5]
TEM virus images: Benchmark dataset and deep learning classification.

Comput Methods Programs Biomed. 2021-9

[6]
Modeling a deep transfer learning framework for the classification of COVID-19 radiology dataset.

PeerJ Comput Sci. 2021-8-3

[7]
Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study.

Lancet Digit Health. 2019-9

[8]
Glaucoma detection and staging from visual field images using machine learning techniques.

PLoS One. 2025-1-17

[9]
A medical image classification method based on self-regularized adversarial learning.

Med Phys. 2024-11

[10]
Integrated approach of federated learning with transfer learning for classification and diagnosis of brain tumor.

BMC Med Imaging. 2024-5-15

本文引用的文献

[1]
Automated Identification of Cutaneous Leishmaniasis Lesions Using Deep-Learning-Based Artificial Intelligence.

Biomedicines. 2023-12-20

[2]
Systematic review of deep learning image analyses for the diagnosis and monitoring of skin disease.

NPJ Digit Med. 2023-9-27

[3]
Deep Learning Based Classification of Dermatological Disorders.

Biomed Eng Comput Biol. 2023-7-31

[4]
Cutaneous leishmaniasis situation analysis in the Islamic Republic of Iran in preparation for an elimination plan.

Front Public Health. 2023

[5]
A deep-learning algorithm to classify skin lesions from mpox virus infection.

Nat Med. 2023-3

[6]
Poor adherence is a major barrier to the proper treatment of cutaneous leishmaniasis: A case-control field assessment in Iran.

Int J Parasitol Drugs Drug Resist. 2023-4

[7]
Deep Neural Forest for Out-of-Distribution Detection of Skin Lesion Images.

IEEE J Biomed Health Inform. 2023-1

[8]
A machine learning-based system for detecting leishmaniasis in microscopic images.

BMC Infect Dis. 2022-1-12

[9]
Determinants of Unresponsiveness to Treatment in Cutaneous Leishmaniasis: A Focus on Anthroponotic Form Due to .

Front Microbiol. 2021-6-1

[10]
A novel diagnostic and prognostic approach for unresponsive patients with anthroponotic cutaneous leishmaniasis using artificial neural networks.

PLoS One. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索