Suppr超能文献

一种用于对猴痘病毒感染所致皮肤损伤进行分类的深度学习算法。

A deep-learning algorithm to classify skin lesions from mpox virus infection.

机构信息

Department of Medicine, Stanford University, Stanford, CA, USA.

Stanford Center for Biomedical Informatics Research (BMIR), Department of Biomedical Data Science, Stanford University, Stanford, USA.

出版信息

Nat Med. 2023 Mar;29(3):738-747. doi: 10.1038/s41591-023-02225-7. Epub 2023 Mar 2.

Abstract

Undetected infection and delayed isolation of infected individuals are key factors driving the monkeypox virus (now termed mpox virus or MPXV) outbreak. To enable earlier detection of MPXV infection, we developed an image-based deep convolutional neural network (named MPXV-CNN) for the identification of the characteristic skin lesions caused by MPXV. We assembled a dataset of 139,198 skin lesion images, split into training/validation and testing cohorts, comprising non-MPXV images (n = 138,522) from eight dermatological repositories and MPXV images (n = 676) from the scientific literature, news articles, social media and a prospective cohort of the Stanford University Medical Center (n = 63 images from 12 patients, all male). In the validation and testing cohorts, the sensitivity of the MPXV-CNN was 0.83 and 0.91, the specificity was 0.965 and 0.898 and the area under the curve was 0.967 and 0.966, respectively. In the prospective cohort, the sensitivity was 0.89. The classification performance of the MPXV-CNN was robust across various skin tones and body regions. To facilitate the usage of the algorithm, we developed a web-based app by which the MPXV-CNN can be accessed for patient guidance. The capability of the MPXV-CNN for identifying MPXV lesions has the potential to aid in MPXV outbreak mitigation.

摘要

未被发现的感染和感染个体的延迟隔离是推动猴痘病毒(现称为猴痘病毒或 MPXV)爆发的关键因素。为了更早地发现 MPXV 感染,我们开发了一种基于图像的深度卷积神经网络(命名为 MPXV-CNN),用于识别由 MPXV 引起的特征性皮肤损伤。我们组装了一个包含 139198 张皮肤损伤图像的数据集,分为训练/验证和测试队列,包括来自八个皮肤科存储库的非 MPXV 图像(n=138522)和来自科学文献、新闻文章、社交媒体和斯坦福大学医疗中心前瞻性队列的 MPXV 图像(n=676;来自 12 名男性患者的 63 张图像)。在验证和测试队列中,MPXV-CNN 的灵敏度分别为 0.83 和 0.91,特异性分别为 0.965 和 0.898,曲线下面积分别为 0.967 和 0.966。在前瞻性队列中,灵敏度为 0.89。MPXV-CNN 的分类性能在各种肤色和身体部位都具有稳健性。为了方便算法的使用,我们开发了一个基于网络的应用程序,通过该程序可以访问 MPXV-CNN 以指导患者。MPXV-CNN 识别 MPXV 损伤的能力有可能有助于减轻 MPXV 爆发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5386/10033450/3cac755e5afe/41591_2023_2225_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验