Suppr超能文献

基于深度学习的皮肤病分类

Deep Learning Based Classification of Dermatological Disorders.

作者信息

AlSuwaidan Lulwah

机构信息

Innovation and Emerging Technologies Center, Digital Government Authority, Saudi Arabia.

出版信息

Biomed Eng Comput Biol. 2023 Jul 31;14:11795972221138470. doi: 10.1177/11795972221138470. eCollection 2023.

Abstract

Automated medical diagnosis has become crucial and significantly supports medical doctors. Thus, there is a demand for inventing deep learning (DL) and convolutional networks for analyzing medical images. Dermatology, in particular, is one of the domains that was recently targeted by AI specialists to introduce new DL algorithms or enhance convolutional neural network (CNN) architectures. A significantly high proportion of studies in the field are concerned with skin cancer, whereas other dermatological disorders are still limited. In this work, we examined the performance of 6 CNN architectures named VGG16, EfficientNet, InceptionV3, MobileNet, NasNet, and ResNet50 for the top 3 dermatological disorders that frequently appear in the Middle East. An Image filtering and denoising were imposed in this work to enhance image quality and increase architecture performance. Experimental results revealed that MobileNet achieved the highest performance and accuracy among the CNN architectures and can classify disorder with high performance (95.7% accuracy). Future scope will focus more on proposing a new methodology for deep-based classification. In addition, we will expand the dataset for more images that consider new disorders and variations.

摘要

自动化医学诊断已变得至关重要,并为医生提供了重要支持。因此,需要发明深度学习(DL)和卷积网络来分析医学图像。特别是皮肤病学,是人工智能专家最近针对引入新的深度学习算法或增强卷积神经网络(CNN)架构的领域之一。该领域中相当高比例的研究都与皮肤癌有关,而其他皮肤病仍然受到限制。在这项工作中,我们研究了6种名为VGG16、EfficientNet、InceptionV3、MobileNet、NasNet和ResNet50的卷积神经网络架构对中东地区常见的前3种皮肤病的性能。在这项工作中进行了图像滤波和去噪,以提高图像质量并提升架构性能。实验结果表明,在卷积神经网络架构中,MobileNet实现了最高的性能和准确率,并且能够以高性能(95.7%的准确率)对疾病进行分类。未来的研究方向将更多地集中在提出一种基于深度学习的新分类方法。此外,我们将扩大数据集,纳入更多考虑新疾病和变异的图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10392223/9c56af8056e6/10.1177_11795972221138470-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验